Cortical surface biomarkers for predicting cognitive outcomes using group l 2,1 norm

[1]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[2]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[3]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[4]  Benjamin J. Shannon,et al.  Parietal lobe contributions to episodic memory retrieval , 2005, Trends in Cognitive Sciences.

[5]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[6]  J. Morris,et al.  The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals , 2008, Cerebral cortex.

[7]  Akram Bakkour,et al.  The cortical signature of prodromal AD , 2009, Neurology.

[8]  Mark E. Schmidt,et al.  The Alzheimer's Disease Neuroimaging Initiative: Progress report and future plans , 2010, Alzheimer's & Dementia.

[9]  Jason H. Moore,et al.  Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans , 2010, Alzheimer's & Dementia.

[10]  Michael Weiner,et al.  Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort , 2010, NeuroImage.

[11]  Eric P. Xing,et al.  Multi-population GWA mapping via multi-task regularized regression , 2010, Bioinform..

[12]  Moo K. Chung,et al.  General multivariate linear modeling of surface shapes using SurfStat , 2010, NeuroImage.

[13]  Brian B. Avants,et al.  Dementia induces correlated reductions in white matter integrity and cortical thickness: A multivariate neuroimaging study with sparse canonical correlation analysis , 2010, NeuroImage.

[14]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[15]  Gaël Varoquaux,et al.  Total Variation Regularization for fMRI-Based Prediction of Behavior , 2011, IEEE Transactions on Medical Imaging.

[16]  Shannon L. Risacher,et al.  Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance , 2011, 2011 International Conference on Computer Vision.

[17]  Ben Taskar,et al.  Generative-Discriminative Basis Learning for Medical Imaging , 2012, IEEE Transactions on Medical Imaging.

[18]  Shannon L. Risacher,et al.  Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Gaël Varoquaux,et al.  Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering , 2012, ICML.

[20]  Shannon L. Risacher,et al.  Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort , 2012, Bioinform..

[21]  Mert R. Sabuncu,et al.  The Relevance Voxel Machine (RVoxM): A Self-Tuning Bayesian Model for Informative Image-Based Prediction , 2012, IEEE Transactions on Medical Imaging.

[22]  Bertrand Thirion,et al.  Multiscale Mining of fMRI Data with Hierarchical Structured Sparsity , 2012, SIAM J. Imaging Sci..

[23]  Jonathan E. Taylor,et al.  Interpretable whole-brain prediction analysis with GraphNet , 2013, NeuroImage.

[24]  Andrew J. Saykin,et al.  Identifying the Neuroanatomical Basis of Cognitive Impairment in Alzheimer's Disease by Correlation- and Nonlinearity-Aware Sparse Bayesian Learning , 2014, IEEE Transactions on Medical Imaging.