Electroless plating Ni-P coatings on La(Fe, Si)13 hydride bulks for room-temperature magnetic-refrigeration application

[1]  V. Zverev,et al.  Peculiarities of Magnetic and Magnetocaloric Properties of Fe–Rh Alloys in the Range of Antiferromagnet–Ferromagnet Transition , 2020, Physics of Metals and Metallography.

[2]  V. Zverev,et al.  Viable Materials with a Giant Magnetocaloric Effect , 2020, Crystals.

[3]  Y. Ouyang,et al.  LaFe11Co0.8Si1.2/Al magnetocaloric composites prepared by hot pressing , 2020 .

[4]  V. Pecharsky,et al.  The effect of cooling rate on magnetothermal properties of Fe49Rh51 , 2020 .

[5]  Juan Cheng,et al.  Microstructure, mechanical and magnetocaloric properties of bulk La0.9Ce0.1Fe11.7-xMnxSi1.3 hydrides prepared by high-hydrogen-pressure sintering , 2020 .

[6]  Yixu Wang,et al.  Corrosion Behavior of Nonstoichiometric La(Fe,Si)13-Based Alloys , 2019, The Journal of Physical Chemistry C.

[7]  K. Engelbrecht,et al.  Nature—Inspired Flow Patterns for Active Magnetic Regenerators Assessed Using a 1D AMR Model , 2019, Front. Energy Res..

[8]  Jingli Luo,et al.  Insights into the Interfacial Process in Electroless Ni-P Coating on Supercritical CO2 Transport Pipeline as Relevant to Carbon Capture and Storage. , 2019, ACS applied materials & interfaces.

[9]  V. I. Zverev,et al.  Review on the materials and devices for magnetic refrigeration in the temperature range of nitrogen and hydrogen liquefaction , 2019, Physica B: Condensed Matter.

[10]  Vladimir Zverev,et al.  Review on magnetic refrigeration devices based on HTSC materials , 2019, International Journal of Refrigeration.

[11]  M. Ryan,et al.  The electrochemical behaviour of magnetocaloric alloys La(Fe,Mn,Si)13Hx under magnetic field conditions. , 2019, Chemical communications.

[12]  F. Hu,et al.  Mechanical and magnetocaloric properties of La(Fe,Mn,Si)13Hδ/Cu plates prepared by Cu-binding prior to hydrogenation , 2019, Intermetallics.

[13]  R. Mole,et al.  Colossal barocaloric effects in plastic crystals , 2018, Nature.

[14]  A. Funk,et al.  Getting magnetocaloric materials into good shape: Cold-working of La(Fe, Co, Si)13 by powder-in-tube-processing , 2018, Materials Today Energy.

[15]  N. Sun,et al.  Study of the Microstructure, Mechanical, and Magnetic Properties of LaFe11.6Si1.4Hy/Bi Magnetocaloric Composites , 2018, Materials.

[16]  Jian Liu,et al.  Outstanding Comprehensive Performance of La(Fe, Si)13Hy/In Composite with Durable Service Life for Magnetic Refrigeration , 2018 .

[17]  K. Engelbrecht,et al.  Experimental and numerical comparison of multi-layered La(Fe,Si,Mn)13Hy active magnetic regenerators , 2018 .

[18]  Yixu Wang,et al.  Corrosion behavior and phase formation of LaFe13 − xSixBy alloys , 2017 .

[19]  P. Fournier,et al.  Advanced materials for magnetic cooling: Fundamentals and practical aspects , 2017, 2012.08176.

[20]  Mohamed K. Hassan,et al.  Indentation and erosion behavior of electroless Ni-P coating on pipeline steel , 2017 .

[21]  O. Gutfleisch,et al.  Production and properties of metal-bonded La(Fe,Mn,Si)13Hx composite material , 2017 .

[22]  Yimin Gao,et al.  Investigation of the Corrosion Behavior of Electroless Ni-P Coating in Flue Gas Condensate , 2017 .

[23]  H. Viles,et al.  Weathering of Two Anti-Graffiti Protective Coatings on Concrete Paving Slabs , 2016 .

[24]  A. Gebert,et al.  Exploring corrosion protection of La-Fe-Si magnetocaloric alloys by passivation , 2016 .

[25]  A. Yan,et al.  LaFe11.6Si1.4Hy/Sn magnetocaloric composites by hot pressing , 2016 .

[26]  Wenchang Wang,et al.  Ductile electroless Ni–P coating onto flexible printed circuit board , 2016 .

[27]  Suresh K Vandrangi,et al.  Enhanced Magnetocaloric Effect Driven by Interfacial Magnetic Coupling in Self-Assembled Mn3O4-La(0.7)Sr(0.3)MnO3 Nanocomposites. , 2015, ACS applied materials & interfaces.

[28]  Z. Ou,et al.  Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe,Mn)11.7Si1.3H1.8 , 2015 .

[29]  N. Sun,et al.  High magnetic-refrigeration performance of plate-shaped La0.5Pr0.5Fe11.4Si1.6 hydrides sintered in high-pressure H2 atmosphere , 2015 .

[30]  F. Hu,et al.  Mechanical properties and magnetocaloric effects in La(Fe, Si)13 hydrides bonded with different epoxy resins , 2015 .

[31]  P. Fajfar,et al.  Epoxy-bonded La–Fe–Co–Si magnetocaloric plates , 2015 .

[32]  J. Eckert,et al.  A new type of La(Fe,Si)13-based magnetocaloric composite with amorphous metallic matrix , 2015 .

[33]  Shigeru Suzuki,et al.  Suppression of aqueous corrosion of La(Fe0.88Si0.12)13 by reducing dissolved oxygen concentration for high-performance magnetic refrigeration , 2014 .

[34]  Y. Long,et al.  Corrosion and latent heat in thermal cycles for La(Fe,Mn,Si) 13 magnetocaloric compounds , 2014 .

[35]  Andrej Kitanovski,et al.  Experimental comparison of multi-layered La–Fe–Co–Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator , 2014 .

[36]  W. Sha,et al.  Electroless nickel, alloy, composite and nano coatings – A critical review , 2013 .

[37]  Konstantin P. Skokov,et al.  Selective laser melting of La(Fe,Co,Si) 13 geometries for magnetic refrigeration , 2013 .

[38]  N. Tian,et al.  Magnetic hysteresis loss and corrosion behavior of LaFe11.5Si1.5 particles coated with Cu , 2013 .

[39]  U. Hannemann,et al.  Novel La(Fe,Si)13/Cu Composites for Magnetic Cooling , 2012 .

[40]  L. Schultz,et al.  Novel Design of La(Fe,Si)13 Alloys Towards High Magnetic Refrigeration Performance , 2010, Advanced materials.

[41]  E. Han,et al.  High corrosion resistance multilayer nickel coatings on AZ91D magnesium alloys , 2007 .

[42]  G. Staikov,et al.  Initial stages of Ni-P electrodeposition: growth morphology and composition of deposits , 2002 .

[43]  Glenn O. Mallory,et al.  Electroless plating : fundamentals and applications , 1990 .

[44]  H. Nakagome,et al.  Cooling Properties of Gd Alloys and La ( Fe , Si ) 13-Based Compounds in Active Magnetic Refrigeration for Environmentally-Friendly Cooling Systems , 2022 .