Evaluating a 3-D transport model of atmospheric CO 2 using ground-based, aircraft, and space-borne data

We evaluate the GEOS-Chem atmospheric trans- port model (v8-02-01) of CO2 over 2003-2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA God- dard Global Modeling and Assimilation Office, using sur- face, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman Fil- ter to estimate a posteriori biospheric+biomass burning (BS + BB) and oceanic (OC) CO2 fluxes from 22 geo- graphical regions, following the TransCom-3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS + BB + OC CO2 fluxes over 2004-2006 for GEOS-4 (GEOS-5) meteorol- ogy are 4.4± 0.9 ( 4.2± 0.9), 3.9± 0.9 ( 4.5± 0.9), and 5.2± 0.9 ( 4.9± 0.9) PgC yr 1 , respectively. After taking into account anthropogenic fossil fuel and bio-fuel emissions, the global annual net CO2 emissions for 2004- 2006 are estimated to be 4.0± 0.9 (4.2± 0.9), 4.8 ± 0.9 (4.2± 0.9), and 3.8± 0.9 (4.1± 0.9) PgC yr 1 , respectively. The estimated 3-yr total net emission for GEOS-4 (GEOS- 5) meteorology is equal to 12.5 (12.4) PgC, agreeing with other recent top-down estimates (12-13 PgC). The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992-1996, but we find larger net sinks over northern and southern conti- nents. We find large departures from our a priori over Eu- rope during summer 2003, over temperate Eurasia during

[1]  Sarah L. Dance,et al.  Estimating surface CO 2 fluxes from space-borne CO 2 dry air mole fraction observations using an ensemble Kalman Filter , 2008 .

[2]  Taro Takahashi,et al.  Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models , 2002, Nature.

[3]  Sander Houweling,et al.  CO 2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport , 2003 .

[4]  D. Jacob,et al.  Why are there large differences between models in global budgets of tropospheric ozone , 2007 .

[5]  T. J. Blasing,et al.  An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2 , 2008 .

[6]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[7]  Pieter P. Tans,et al.  Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record , 1995 .

[8]  Philip B. Russell,et al.  Overview of the Summer 2004 Intercontinental Chemical Transport Experiment–North America (INTEX-A) , 2006 .

[9]  James T. Randerson,et al.  Differences between surface and column atmospheric CO2 and implications for carbon cycle research , 2004 .

[10]  David G. Streets,et al.  Using CO2:CO Correlations to Improve Inverse Analyses of Carbon Fluxes , 2006 .

[11]  B. D. Belan,et al.  The YAK-AEROSIB transcontinental aircraft campaigns: new insights on the transport of CO2, CO and O3 across Siberia , 2008 .

[12]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[13]  Christopher B. Field,et al.  The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide , 1997 .

[14]  S. Wofsy,et al.  Strategies for measurement of atmospheric column means of carbon dioxide from aircraft using discrete sampling , 2003 .

[15]  Title Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO 2 : Implications for inversion analyses Permalink , 2005 .

[16]  Jennifer A. Logan,et al.  An assessment of biofuel use and burning of agricultural waste in the developing world , 2003 .

[17]  Philippe Ciais,et al.  Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks , 2004, Global Biogeochemical Cycles.

[18]  John C. Gille,et al.  Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide , 2004 .

[19]  S. Dance,et al.  Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter , 2009 .

[20]  Gregg Marland,et al.  Carbon Dioxide Emission Estimates from Fossil-Fuel Burning\, Hydraulic Cement Production\, and Gas Flaring for 1995 on a One Degree Grid Cell Basis , 2003 .

[21]  J. Hack Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2) , 1994 .

[22]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[23]  D. Jacob,et al.  A global three-dimensional model analysis of the atmospheric budgets of HCN and CH 3 CN: Constraints from aircraft and ground measurements , 2003 .

[24]  P. Tans,et al.  Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985 , 1989 .

[25]  P. Ciais,et al.  New Insights on the Chemical Composition of the Siberian Air Shed From The Yak-Aerosib Aircraft Campaigns , 2010 .

[26]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[27]  Yuk L. Yung,et al.  CO2 in the upper troposphere: Influence of stratosphere‐troposphere exchange , 2006 .

[28]  Fabienne Maignan,et al.  CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements , 2010 .

[29]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[30]  C. Rödenbeck,et al.  The effect of systematic measurement errors on atmospheric CO2 inversions: a quantitative assessment , 2005 .

[31]  J. Randerson,et al.  New constraints on Northern Hemisphere growing season net flux , 2007 .

[32]  J. Terborgh,et al.  Drought Sensitivity of the Amazon Rainforest , 2009, Science.

[33]  P. Palmer,et al.  Interpreting the variability of space-borne CO 2 column-averaged volume mixing ratios over North America using a chemistry transport model , 2008 .

[34]  Kevin R. Gurney,et al.  Interannual variations in continental‐scale net carbon exchange and sensitivity to observing networks estimated from atmospheric CO2 inversions for the period 1980 to 2005 , 2008 .

[35]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[36]  Philippe Ciais,et al.  Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2 , 2007, Science.

[37]  Thomas S. Pagano,et al.  Satellite remote sounding of mid‐tropospheric CO2 , 2008 .

[38]  Hidekazu Matsueda,et al.  Aircraft observation of carbon dioxide at 8–13 km altitude over the western Pacific from 1993 to 1999 , 2002 .

[39]  P. Bernath,et al.  What drives the observed variability of HCN in the troposphere and lower stratosphere , 2009 .

[40]  Shamil Maksyutov,et al.  TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information , 2003 .