New class of regular and well behaved exact solutions in general relativity

[1]  W. Simon Static perfect fluids with Pant-Sah equations of state , 2008, 0801.2741.

[2]  K. Lake All static spherically symmetric perfect-fluid solutions of Einstein’s equations , 2002, gr-qc/0209104.

[3]  K. Lake,et al.  Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations , 1998, gr-qc/9809013.

[4]  C. Burden,et al.  Nonperturbative treatment of heavy quarks and mesons , 1996, hep-ph/9605328.

[5]  N. Pant Uniform radial motion of sound in a relativistic fluid ball , 1996 .

[6]  D. Pant Varieties of new classes of interior solutions in general relativity , 1994 .

[7]  N. Pant,et al.  A new class of exact solutions in general relativity representing perfect fluid balls , 1993 .

[8]  Sah,et al.  Massive fluid spheres in general relativity. , 1985, Physical review. D, Particles and fields.

[9]  A. Sah,et al.  Class of solutions of Einstein's field equations for static fluid spheres , 1982 .

[10]  M. C. Durgapal A class of new exact solutions in general relativity , 1982 .

[11]  J. J. Matese,et al.  New method for extracting static equilibrium configurations in general relativity , 1980 .

[12]  R. Adler A fluid sphere in general relativity , 1974 .

[13]  C. Leibovitz SPHERICALLY SYMMETRIC STATIC SOLUTIONS OF EINSTEIN'S EQUATIONS. , 1969 .

[14]  A. Mehra Radially symmetric distribution of matter , 1966 .

[15]  H. Buchdahl A Relativistic Fluid Sphere Resembling the Emden Polytrope of Index 5. , 1964 .

[16]  M. Wyman Radially Symmetric Distributions of Matter , 1949 .

[17]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .