Three-dimensional quantum anomalous Hall effect in ferromagnetic insulators

The quantum anomalous Hall effect (QAHE) hosts the dissipationless chiral edge states associated with the nonzero Chern number, providing potentially significant applications in future spintronics. The QAHE usually occurs in a two-dimensional system with time-reversal symmetry breaking. In this Rapid Communication, we propose that the QAHE can exist in three-dimensional (3D) ferromagnetic insulators. By imposing inversion symmetry, we develop the topological constraints dictating the appearance of a 3D QAHE based on a parity analysis at the time-reversal invariant points in reciprocal space. Moreover, using first-principles calculations, we identify that 3D QAHE can be realized in a family of intrinsic ferromagnetic insulating oxides, including layered and nonlayered compounds that share a centrosymmetric structure with space group $R\overline{3}m$ (No. 166). The Hall conductivity is quantized to be $\ensuremath{-}\frac{3{e}^{2}}{hc}$ with the lattice constant $c$ along the $c$ axis. The chiral surface sheet states are clearly visible and uniquely distributed on the surfaces that are parallel to the magnetic moment. Our findings open a promising pathway to realize the QAHE in 3D ferromagnetic insulators.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  M. Gilbert,et al.  Large-Chern-number quantum anomalous Hall effect in thin-film topological crystalline insulators. , 2013, Physical review letters.

[3]  Bertrand I. Halperin,et al.  Possible States for a Three-Dimensional Electron Gas in a Strong Magnetic Field , 1987 .

[4]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[5]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[6]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[7]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[8]  E. D. Cubuk,et al.  High-Temperature Quantum Anomalous Hall Effect in n-p Codoped Topological Insulators. , 2015, Physical review letters.

[9]  B. Nikolić,et al.  Monolayer of the 5 d transition metal trichloride OsCl 3 : A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions , 2017 .

[10]  B. Uchoa,et al.  3D Quantum Anomalous Hall Effect in Hyperhoneycomb Lattices , 2017, 1708.02965.

[11]  Don Heiman,et al.  High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. , 2014, Nature materials.

[12]  Haiping Wu,et al.  Quantum anomalous Hall effect in ferromagnetic transition metal halides , 2016, 1609.08115.

[13]  M. Troyer,et al.  Z2Pack: Numerical Implementation of Hybrid Wannier Centers for Identifying Topological Materials , 2016, 1610.08983.

[14]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[15]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[16]  N. Marzari,et al.  Maximally-localized Wannier Functions: Theory and Applications , 2011, 1112.5411.

[17]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[18]  Menghao Wu High-temperature intrinsic quantum anomalous Hall effect in rare Earth monohalide , 2017 .

[19]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[20]  Z. Qiao,et al.  Quantum anomalous Hall effect with tunable Chern number in magnetic topological insulator film , 2011, 1110.6280.

[21]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[22]  Theory of the three-dimensional quantum Hall effect in graphite. , 2007, Physical review letters.

[23]  E. Prodan,et al.  Inversion-symmetric topological insulators , 2010, 1010.4508.

[24]  G. Sawatzky,et al.  CrO2: a self-doped double exchange ferromagnet , 1997, cond-mat/9705091.

[25]  K. Held,et al.  Quantum Anomalous Hall State in Ferromagnetic SrRuO_{3} (111) Bilayers. , 2016, Physical review letters.

[26]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[27]  Wei Zhang,et al.  Quantized Anomalous Hall Effect in Magnetic Topological Insulators , 2010, Science.

[28]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[29]  Z. Lodziana Surface Verwey transition in magnetite. , 2007, Physical review letters.

[30]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[31]  Haldane,et al.  Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly" , 1988, Physical review letters.

[32]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[33]  Shou-Cheng Zhang,et al.  Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs_{2}LiMn_{3}F_{12}. , 2015, Physical review letters.

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[36]  C. M. Wang,et al.  3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals. , 2017, Physical review letters.

[37]  D. Thouless,et al.  Quantized Hall conductance in a two-dimensional periodic potential , 1992 .

[38]  Wu,et al.  Diophantine equation for the three-dimensional quantum Hall effect. , 1992, Physical review. B, Condensed matter.

[39]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[40]  D. Evans,et al.  The structure of the twelve‐layer barium chromium oxide, Ba2Cr7−xO14 (x≃0.5) , 1972 .