The Origin of Kinematically Persistent Planes of Satellites as Driven by the Early Evolution of the Cosmic Web in ΛCDM

Kinematically persistent planes (KPPs) of satellites are fixed sets of satellites co-orbiting around their host galaxy, whose orbital poles are conserved and clustered across long cosmic time intervals. They play the role of “skeletons,” ensuring the long-term durability of positional planes. We explore the physical processes behind their formation in terms of the dynamics of the local cosmic web (CW), characterized via the so-called Lagrangian volumes (LVs) built up around two zoom-in, cosmological hydro-simulations of Milky Way–mass disk galaxy + satellites systems, where three KPPs have been identified. By analyzing the LV deformations in terms of the reduced tensor of inertia (TOI), we find an outstanding alignment between the LV principal directions and the KPP satellites’ orbital poles. The most compressive local mass flows (along the eˆ3 eigenvector) are strong at early times, feeding the so-called eˆ3 -structure, while the smallest TOI axis rapidly decreases. The eˆ3 -structure collapse marks the end of this regime and is the timescale for the establishment of satellite orbital pole clustering when the Universe is ≲4 Gyr old. KPP protosatellites aligned with eˆ3 are those whose orbital poles are either aligned from early times or have been successfully bent at eˆ3 -structure collapse. KPP satellites associated with eˆ1 tend to have early trajectories already parallel to eˆ3 . We show that KPPs can arise as a result of the ΛCDM-predicted large-scale dynamics acting on particular sets of protosatellites, the same dynamics that shape the local CW environment.

[1]  N. Libeskind,et al.  A Rotating Satellite Plane around Milky Way–like Galaxy from the TNG50 Simulation , 2023, The Astrophysical Journal.

[2]  Raul Ernesto Gonzalez,et al.  Redshift evolution of the dark matter haloes shapes , 2023, Monthly Notices of the Royal Astronomical Society.

[3]  Xinghai Zhao,et al.  A Study of the Properties and Dynamics of the Disk of Satellites in a Milky-Way-like Galaxy System , 2023, Galaxies.

[4]  P. Tissera,et al.  Planes of Satellites around Simulated Disk Galaxies. II. Time-persistent Planes of Kinematically Coherent Satellites in ΛCDM , 2022, The Astrophysical Journal.

[5]  A. Kravtsov,et al.  Spatial and orbital planes of the Milky Way satellites: unusual but consistent with $\Lambda$CDM , 2022, 2209.02714.

[6]  Y. Hoffman,et al.  Anisotropic satellite accretion on to the Local Group with HESTIA , 2022, Monthly Notices of the Royal Astronomical Society.

[7]  M. Pawlowski Phase-Space Correlations among Systems of Satellite Galaxies , 2021, Galaxies.

[8]  P. Duc,et al.  Flattened structures of dwarf satellites around massive host galaxies in the MATLAS low-to-moderate density fields , 2021, Astronomy & Astrophysics.

[9]  A. Price-Whelan,et al.  The Clustering of Orbital Poles Induced by the LMC: Hints for the Origin of Planes of Satellites , 2021, The Astrophysical Journal.

[10]  D. Lang,et al.  Tracing satellite planes in the Sculptor group , 2021, Astronomy & Astrophysics.

[11]  M. Hilker,et al.  The coherent motion of Cen A dwarf satellite galaxies remains a challenge for ΛCDM cosmology , 2020, Astronomy & Astrophysics.

[12]  J. Bailin,et al.  Planes of satellites around Milky Way/M31-mass galaxies in the FIRE simulations and comparisons with the Local Group , 2020, Monthly Notices of the Royal Astronomical Society.

[13]  M. Pawlowski,et al.  An updated detailed characterization of planes of satellites in the MW and M31 , 2020, 2010.08624.

[14]  C. Frenk,et al.  Cosmic Ballet III: Halo spin evolution in the cosmic web , 2020, 2007.10365.

[15]  N. Libeskind,et al.  The Alignment of Satellite Systems with Cosmic Filaments in the SDSS DR12 , 2020, The Astrophysical Journal.

[16]  P. Tissera,et al.  Planes of Satellites around Simulated Disk Galaxies. I. Finding High-quality Planar Configurations from Positional Information and Their Comparison to MW/M31 Data , 2020, The Astrophysical Journal.

[17]  C. Pichon,et al.  The SAMI Galaxy Survey: first detection of a transition in spin orientation with respect to cosmic filaments in the stellar kinematics of galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  M. Steinmetz,et al.  The orientation of planes of dwarf galaxies in the quasi-linear Universe , 2019, Monthly Notices of the Royal Astronomical Society.

[19]  R. Davé,et al.  And yet it flips: connecting galactic spin and the cosmic web , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  C. Frenk,et al.  Evolution of galactic planes of satellites in the eagle simulation , 2019, Monthly Notices of the Royal Astronomical Society.

[21]  C. Frenk,et al.  The Cosmic Ballet II: spin alignment of galaxies and haloes with large-scale filaments in the EAGLE simulation , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  J. Forero-Romero,et al.  We are not the 99 percent: quantifying asphericity in the distribution of Local Group satellites , 2018, 1805.03188.

[23]  C. Brook,et al.  Gaia DR2 proper motions of dwarf galaxies within 420 kpc , 2018, Astronomy & Astrophysics.

[24]  C. Frenk,et al.  The Cosmic Ballet: spin and shape alignments of haloes in the cosmic web , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  H. Jerjen,et al.  A whirling plane of satellite galaxies around Centaurus A challenges cold dark matter cosmology , 2018, Science.

[26]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[27]  C. Porciani,et al.  ZOMG - III. The effect of halo assembly on the satellite population , 2017, 1707.01108.

[28]  Rien van de Weygaert,et al.  Tracing the cosmic web , 2017, 1705.03021.

[29]  Qirong Zhu,et al.  Is There a Disk of Satellites around the Milky Way? , 2017, 1702.00485.

[30]  H. Jerjen,et al.  The M 101 group complex: new dwarf galaxy candidates and spatial structure , 2017, 1701.03681.

[31]  S. Chakrabarti,et al.  Is the vast polar structure of dwarf galaxies a serious problem for Λ cold dark matter , 2016, 1612.07325.

[32]  A. Brooks,et al.  The Role of Baryons in Creating Statistically Significant Planes of Satellites around Milky Way-Mass Galaxies , 2016, 1610.03077.

[33]  P. Coppin,et al.  The potential role of NGC 205 in generating Andromeda's vast thin corotating plane of satellite galaxies , 2016, 1608.03763.

[34]  H. Jerjen,et al.  Testing the two planes of satellites in the Centaurus Group , 2016, 1607.04024.

[35]  C. Frenk,et al.  Alignments between galaxies, satellite systems and haloes , 2016, 1605.01728.

[36]  C. Pichon,et al.  Caught in the rhythm: how satellites settle into a plane around their central galaxy , 2015, 1512.00400.

[37]  A. Dutton,et al.  Simulated ΛCDM analogues of the thin plane of satellites around the Andromeda galaxy are not kinematically coherent structures , 2015, 1510.06028.

[38]  Qi Guo,et al.  Planes of satellite galaxies: when exceptions are the rule , 2015, Monthly Notices of the Royal Astronomical Society.

[39]  J. Oñorbe,et al.  Lagrangian Volume Deformations around Simulated Galaxies , 2015, 1504.06297.

[40]  D. Pogosyan,et al.  Spin alignments within the cosmic web: a theory of constrained tidal torques near filaments , 2015, 1504.06073.

[41]  M. Steinmetz,et al.  Planes of satellite galaxies and the cosmic web , 2015, 1503.05915.

[42]  P. Tissera,et al.  Angular momentum evolution for galaxies , 2015, 1503.01798.

[43]  N. Libeskind,et al.  The alignment of satellite galaxies and cosmic filaments: observations and simulations , 2015, 1502.02046.

[44]  Y. Hoffman,et al.  The universal nature of subhalo accretion , 2014, 1407.0394.

[45]  P. Kroupa Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation , 2014, 1406.4860.

[46]  C. Pichon,et al.  Mergers drive spin swings along the cosmic web , 2014, 1403.2728.

[47]  J. Cardoso,et al.  Dancing in the dark: galactic properties trace spin swings along the cosmic web , 2014, 1402.1165.

[48]  Durham,et al.  Evolution of the cosmic web , 2014, 1401.7866.

[49]  H. Baumgardt,et al.  A comparison of the distribution of satellite galaxies around Andromeda and the results of ΛCDM simulations , 2013, 1312.3629.

[50]  Rien van de Weygaert,et al.  The Zel'dovich approximation: key to understanding cosmic web complexity , 2013, 1311.7134.

[51]  I. Karachentsev,et al.  CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP , 2013, 1309.4130.

[52]  H. Courtois,et al.  COSMICFLOWS-2: THE DATA , 2013, 1307.7213.

[53]  P. Kroupa,et al.  Dwarf galaxy planes: the discovery of symmetric structures in the Local Group , 2013, 1307.6210.

[54]  M. Aragon-Calvo The hierarchical nature of the spin alignment of dark matter haloes in filaments , 2013, 1303.1590.

[55]  Bonn,et al.  The vast thin plane of M31 corotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group , 2013, 1303.1817.

[56]  Rien van de Weygaert,et al.  NEXUS: Tracing the cosmic web connection , 2012, 1209.2043.

[57]  C. Frenk,et al.  The spatial distribution of galactic satellites in the Λ cold dark matter cosmology , 2012, 1206.1340.

[58]  P. Kroupa,et al.  The VPOS: a vast polar structure of satellite galaxies, globular clusters and streams around the Milky Way , 2012, 1204.5176.

[59]  Julien Devriendt,et al.  Connecting the cosmic web to the spin of dark haloes: implications for galaxy formation , 2012, 1201.5794.

[60]  Matthias Steinmetz,et al.  The cosmic web and the orientation of angular momenta , 2012, 1201.3365.

[61]  Y. Hoffman,et al.  A kinematic classification of the cosmic web , 2012, 1201.3367.

[62]  A. Serna,et al.  Formation of galaxies in Λcold dark matter cosmologies – I. The fine structure of disc galaxies , 2012, 1201.2641.

[63]  S. White,et al.  The origin of discs and spheroids in simulated galaxies , 2011, 1112.2220.

[64]  D. Pogosyan,et al.  Rigging dark haloes: why is hierarchical galaxy formation consistent with the inside‐out build‐up of thin discs? , 2011, 1105.0210.

[65]  A. Helmi,et al.  The shape of dark matter haloes in the Aquarius simulations: evolution and memory , 2011, 1104.1566.

[66]  C. Frenk,et al.  The link between galactic satellite orbits and subhalo accretion , 2010, 1008.0484.

[67]  Baltimore.,et al.  Multiscale phenomenology of the cosmic web , 2010, 1007.0742.

[68]  P. Kroupa,et al.  Local-Group tests of dark-matter concordance cosmology - Towards a new paradigm for structure formation , 2010, 1006.1647.

[69]  S. Cole,et al.  How common is the Milky Way-satellite system alignment? , 2009, 0905.1696.

[70]  J. Oñorbe,et al.  Shape and kinematics of elliptical galaxies: evolution due to merging at z < 1.5 , 2008, 0812.4306.

[71]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[72]  V. Springel,et al.  Substructures in hydrodynamical cluster simulations , 2008, 0808.3401.

[73]  M. Moll'a,et al.  Chemical evolution of galaxies – I. A composition‐dependent SPH model for chemical evolution and cooling , 2008, 0804.3766.

[74]  G. Lake,et al.  Small Dwarf Galaxies within Larger Dwarfs: Why Some Are Luminous while Most Go Dark , 2008, 0802.0001.

[75]  A. Helmi,et al.  Infall of substructures on to a Milky Way-like dark halo , 2007, 0711.2429.

[76]  P. Kroupa,et al.  The spatial distribution of the Milky Way and Andromeda satellite galaxies , 2006, astro-ph/0610933.

[77]  S. White,et al.  Feedback and metal enrichment in cosmological SPH simulations – II. A multiphase model with supernova energy feedback , 2006, astro-ph/0604524.

[78]  A. Irwin The satellite distribution of M31 , 2005, astro-ph/0510654.

[79]  E. K. Grebel,et al.  The Anisotropic Distribution of M31 Satellite Galaxies: A Polar Great Plane of Early-type Companions , 2005, astro-ph/0509258.

[80]  A. C. González-García,et al.  Encounters between spherical galaxies—I. Systems without a dark halo , 2005, astro-ph/0506014.

[81]  S. White,et al.  Feedback and metal enrichment in cosmological smoothed particle hydrodynamics simulations ¿ I. A model for chemical enrichment , 2005, astro-ph/0505440.

[82]  S. Cole,et al.  The distribution of satellite galaxies: the great pancake , 2005, astro-ph/0503400.

[83]  J. Bailin,et al.  Internal and External Alignment of the Shapes and Angular Momenta of ΛCDM Halos , 2004, astro-ph/0408163.

[84]  Y. Hoffman,et al.  Testing tidal-torque theory – II. Alignment of inertia and shear and the characteristics of protohaloes , 2001, astro-ph/0105165.

[85]  Y. Hoffman,et al.  Testing tidal-torque theory: I. spin amplitude and direction , 2001, astro-ph/0105123.

[86]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[87]  D. Lynden-Bell,et al.  Ghostly streams from the formation of the Galaxy’s halo , 1995 .

[88]  L. Kofman,et al.  Coherent structures in the universe and the adhesion model , 1992 .

[89]  G. Illingworth,et al.  The ordered nature of elliptical galaxies - Implications for their intrinsic angular momenta and shapes , 1991 .

[90]  Simon D. M. White,et al.  Angular momentum growth in protogalaxies , 1984 .

[91]  O. Gerhard A quasi-stable stellar system with prolate inner and oblate outer parts , 1983 .

[92]  D. Lynden-Bell,et al.  Dwarf Galaxies and Globular Clusters in High Velocity Hydrogen Streams , 1976 .

[93]  D. Lynden-Bell Statistical Mechanics of Violent Relaxation in Stellar Systems , 1967 .

[94]  Rory J. E. Smith,et al.  A Corotating Group of Dwarf Galaxies around NGC 2750 as a Centaurus A Analog , 2021 .

[95]  N I , 2008 .

[96]  E. Gaztañaga,et al.  Structure Formation in the Universe , 2003 .

[97]  A. I. Saichev,et al.  The large-scale structure of the Universe in the frame of the model equation of non-linear diffusion , 1989 .

[98]  Phillip James Edwin Peebles,et al.  Origin of the Angular Momentum of Galaxies , 1969 .

[99]  H. Cramér Mathematical methods of statistics , 1946 .