Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn

A refined version of the ‘‘shape consistent’’ effective potential procedure of Christiansen, Lee, and Pitzer was used to compute averaged relativistic effective potentials (AREP) and spin‐orbit operators for the atoms Li through Ar. These are tabulated in analytic form. Small optimized Gaussian basis sets with expansion coefficients for the lowest energy state for each atom are given and the reliability of the potentials relative to all electric calculations is discussed. Finally a procedure for computing molecular moments and Breit corrections is suggested.

[1]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. II. All‐electron comparisons and modifications of the procedure , 1978 .

[2]  W. C. Ermler,et al.  Ab initio effective core potentials including relativistic effects. I. Formalism and applications to the Xe and Au atoms , 1977 .

[3]  Paul Baybutt,et al.  Ab initio effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons , 1976 .

[4]  W. C. Ermler,et al.  Ab initio calculations of spin-orbit coupling in the Group 13 and 17 atoms , 1986 .

[5]  S. Huzinaga,et al.  Atomic and molecular calculations with the model potential method. I , 1975 .

[6]  W. J. Stevens,et al.  Effective Potentials in Molecular Quantum Chemistry , 1984 .

[7]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[8]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[9]  Ab initio effective core potentials including relativistic effects. II. Potential energy curves for Xe2, Xe+2, and Xe*2 , 1978 .

[10]  K. Pitzer,et al.  Electron structure calculations including CI for ten low lying states of Pb2 and Sn2. Partition function and dissociation energy of Sn2 , 1983 .

[11]  P. A. Christiansen ELECTRONIC STRUCTURE FOR THE GROUND STATE OF T1H FROM RELATIVISTIC MULTICONFIGURATION SCF CALCULATIONS , 1980 .

[12]  P. A. Christiansen,et al.  IMPROVED Ab Initio EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS , 1979 .

[13]  P. A. Christiansen,et al.  Ab initio calculation of the X 1Σ+ state of CsH , 1983 .

[14]  J. Desclaux Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120 , 1973 .

[15]  W. Goddard,et al.  Fe and Ni AB initio effective potentials for use in molecular calculations , 1974 .

[16]  W. J. Stevens,et al.  Abinitio effective spin‐orbit operators for use in atomic and molecular structure calculations. Results for CH, OH, SiH, CO+, CO, and SiO , 1982 .

[17]  Wilfried Meyer,et al.  Finite perturbation calculation for the static dipole polarizabilities of the atoms Na through Ca , 1976 .

[18]  P. Durand,et al.  A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids , 1975 .

[19]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[20]  K. Pitzer RELATIVISTIC MODIFICATIONS OF COVALENT BONDING IN HEAVY ELEMENTS: CALCULATIONS FOR TlH , 1981 .

[21]  J. Bearden,et al.  Atomic energy levels , 1965 .

[22]  P. A. Christiansen,et al.  Relativistic ab initio molecular structure calculations including configuration interaction with application to six states of TlH , 1982 .

[23]  P. A. Christiansen,et al.  Reliable static electric dipole polarizabilities for heavy elements , 1982 .

[24]  S. Langhoff,et al.  Use of effective core potentials in perturbation corrections to the Koopmans theorem: Vertical ionization potentials of Cl2, ClN3, and ClNCO , 1983 .

[25]  Kenneth S. Pitzer,et al.  Electronic structure and dissociation curves for the ground states of Tl2 and Tl2+ from relativistic effective potential calculations , 1981 .

[26]  W. C. Ermler,et al.  Ab initio potential energy curves for the low‐lying electronic states of the argon excimer , 1983 .

[27]  K. Pitzer,et al.  The ground and excited states of PtH and PtH+ by relativistic ab initio electronic structure calculations: A model study for hydrogen chemisorption on platinum surfaces and related photoemission properties , 1983 .

[28]  P. A. Christiansen Dissociation curves for nine low lying states of Tl2 from REP CI calculations , 1983 .

[29]  J. Wood,et al.  Improved Pauli Hamiltonian for local-potential problems , 1978 .

[30]  W. J. Stevens,et al.  AB initio effective spin—orbit operators for use in atomic and molecular structure calculations. Results for carbon and silicon , 1982 .

[31]  W. C. Ermler,et al.  AB initio effective core potentials including relativistic effects. A procedure for the inclusion of spin-orbit coupling in molecular wavefunctions , 1981 .

[32]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[33]  P. Hay Abinitio studies of excited states of polyatomic molecules including spin‐orbit and multiplet effects: The electronic states of UF6 , 1983 .

[34]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[35]  S. Langhoff,et al.  Theoretical Determination of the X1Σ+g potential of Cs2 using relativistic effective core potentials , 1982 .

[36]  S. Rice,et al.  Use of Pseudopotentials in Atomic‐Structure Calculations , 1968 .

[37]  W. C. Ermler,et al.  Improved ab initio effective potentials for Ar, Kr, and Xe with applications to their homonuclear dimers , 1981 .

[38]  Walter C. Ermler,et al.  Abinitio relativistic effective potentials with spin‐orbit operators. II. K through Kr , 1986 .

[39]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[40]  H. Hellmann,et al.  A New Approximation Method in the Problem of Many Electrons , 1935 .