The band-gap bowing of AlxGa1−xN alloys

The band gap of AlxGa1−xN is measured for the composition range 0⩽x 800 °C usually lead to stronger apparent bowing (b>+1.3 eV); while growths initiated using low-temperature buffers on sapphire, followed by high-temperature growth, lead to weaker bowing (b<+1.3 eV). Extant data suggest that the intrinsic band-gap bowing parameter for AlGaN alloys is b=+0.62(±0.45) eV.

[1]  Robert M. Biefeld,et al.  The effect of H2 on morphology evolution during GaN metalorganic chemical vapor deposition , 1997 .

[2]  Bo Monemar,et al.  Fundamental energy gap of GaN from photoluminescence excitation spectra , 1974 .

[3]  M. Umeno,et al.  Optical properties of AlxGa1-xN/GaN heterostructures on sapphire by spectroscopic ellipsometry , 1998 .

[4]  M. Cardona Optical Properties of the Silver and Cuprous Halides , 1963 .

[5]  P. Perry,et al.  The optical absorption edge of single‐crystal AlN prepared by a close‐spaced vapor process , 1978 .

[6]  H. Amano,et al.  Heteroepitaxial Growth and the Effect of Strain on the Luminescent Properties of GaN Films on (11 2̄0) and (0001) Sapphire Substrates , 1988 .

[7]  T. Moustakas,et al.  Growth and Doping of AlGaN Alloys by ECR-assisted MBE , 1996 .

[8]  Marc Ilegems,et al.  Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers , 1971 .

[9]  H. Amano,et al.  The Dependence of the Band Gap on Alloy Composition in Strained AlGaN on GaN , 1998 .

[10]  W. Rieger,et al.  Growth of and AlGaN by MOCVD using triethylgallium and tritertiarybutylaluminium , 1997 .

[11]  Isamu Akasaki,et al.  Optical Properties of Strained AlGaN and GaInN on GaN , 1997 .

[12]  Isamu Akasaki,et al.  Energy band‐gap bowing parameter in an AlxGa1−x N alloy , 1987 .

[13]  W. Chow,et al.  Theory of gain in group-III nitride lasers , 1997 .

[14]  M. Gershenzon,et al.  Ultraviolet photoluminescence from undoped and zn doped AlxGa1−xN with x between 0 and 0.75 , 1991 .

[15]  Jaime A. Freitas,et al.  On the origin of electrically active defects in AlGaN alloys grown by organometallic vapor phase epitaxy , 1996 .

[16]  Alan Francis Wright,et al.  Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN , 1997 .

[17]  Joseph A. Miragliotta,et al.  High quality self‐nucleated AlxGa1−x N layers on (00.1) sapphire by low‐pressure metalorganic chemical vapor deposition , 1994 .

[18]  S. Misawa,et al.  Properties of AlxGa1−xN films prepared by reactive molecular beam epitaxy , 1982 .

[19]  J. Harris,et al.  Growth of epitaxial AlxGa1−xN films by pulsed laser deposition , 1998 .

[20]  Robert F. Davis,et al.  Correlation of biaxial strains, bound exciton energies, and defect microstructures in gan films grown on AlN/6H-SiC(0001) substrates , 1997 .

[21]  R. D. Metcalfe,et al.  Growth and properties of GaxAl1-xN compounds , 1978 .

[22]  Alan Francis Wright,et al.  Bowing parameters for zinc‐blende Al1−xGaxN and Ga1−xInxN , 1995 .

[23]  J. Pankove,et al.  Epitaxially grown AlN and its optical band gap , 1973 .

[24]  I. Akasaki,et al.  Edge emission of AlxGa1−xN , 1986 .

[25]  R. Davis,et al.  Growth, Doping and Characterization of AlxGa1−xN Thin Film Alloys on 6H-SiC(0001) Substrates , 1996 .

[26]  Oliver Ambacher,et al.  Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1−xN films , 1997 .

[27]  M. Khan,et al.  Properties and ion implantation of AlxGa1−xN epitaxial single crystal films prepared by low pressure metalorganic chemical vapor deposition , 1983 .

[28]  Oliver Ambacher,et al.  Spectroscopic ellipsometry measurements of AlxGa1−xN in the energy range 3–25 eV , 1998 .