Recurrent and functional regulatory mutations in breast cancer

[1]  Laura M. Heiser,et al.  FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer , 2016, Proceedings of the National Academy of Sciences.

[2]  David C. Jones,et al.  Landscape of somatic mutations in 560 breast cancer whole genome sequences , 2016, Nature.

[3]  E. Winer,et al.  TransCONFIRM: Identification of a Genetic Signature of Response to Fulvestrant in Advanced Hormone Receptor–Positive Breast Cancer , 2016, Clinical Cancer Research.

[4]  Gad Getz,et al.  Somatic ERCC2 Mutations Are Associated with a Distinct Genomic Signature in Urothelial Tumors , 2016, Nature Genetics.

[5]  Michael P Snyder,et al.  Identification of significantly mutated regions across cancer types highlights a rich landscape of functional molecular alterations , 2015, Nature Genetics.

[6]  Howard Y. Chang,et al.  DDX5 and its associated lncRNA Rmrp modulate Th17 cell effector functions , 2015, Nature.

[7]  Steven J. M. Jones,et al.  Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer , 2015, Cell.

[8]  E. Lander,et al.  Comprehensive assessment of cancer missense mutation clustering in protein structures , 2015, Proceedings of the National Academy of Sciences.

[9]  M. Gerstein,et al.  LARVA: an integrative framework for large-scale analysis of recurrent variants in noncoding annotations , 2015, Nucleic acids research.

[10]  Martin A. Nowak,et al.  Mutations driving CLL and their evolution in progression and relapse , 2015, Nature.

[11]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[12]  M. Stratton,et al.  High burden and pervasive positive selection of somatic mutations in normal human skin , 2015, Science.

[13]  M. Snyder,et al.  Recurrent Somatic Mutations in Regulatory Regions of Human Cancer Genomes , 2015, Nature Genetics.

[14]  M. Rubin,et al.  MAGI3–AKT3 fusion in breast cancer amended , 2015, Nature.

[15]  Trevor J Pugh,et al.  Oncotator: Cancer Variant Annotation Tool , 2015, Human mutation.

[16]  E. Larsson,et al.  Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types , 2014, Nature Genetics.

[17]  Shinichi Nakagawa,et al.  The long noncoding RNA Neat1 is required for mammary gland development and lactation , 2014, RNA.

[18]  C. Sander,et al.  Genome-wide analysis of non-coding regulatory mutations in cancer , 2014, Nature Genetics.

[19]  Eric S. Lander,et al.  A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.

[20]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[21]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[22]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[23]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[24]  Lynda Chin,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2013, Science.

[25]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[26]  Juan M. Vaquerizas,et al.  DNA-Binding Specificities of Human Transcription Factors , 2013, Cell.

[27]  Trevor J Pugh,et al.  Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation , 2013, Nucleic acids research.

[28]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumours , 2013 .

[29]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer-associated genes , 2013 .

[30]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[31]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[32]  Swneke D. Bailey,et al.  Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.

[33]  A. Gonzalez-Perez,et al.  Functional impact bias reveals cancer drivers , 2012, Nucleic acids research.

[34]  Matthew B. Callaway,et al.  MuSiC: Identifying mutational significance in cancer genomes , 2012, Genome research.

[35]  Steven J. M. Jones,et al.  Comprehensive molecular portraits of human breast tumors , 2012, Nature.

[36]  A. Børresen-Dale,et al.  The landscape of cancer genes and mutational processes in breast cancer , 2012, Nature.

[37]  A. Sivachenko,et al.  Sequence analysis of mutations and translocations across breast cancer subtypes , 2012, Nature.

[38]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[39]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[40]  Joshua F. McMichael,et al.  Whole Genome Analysis Informs Breast Cancer Response to Aromatase Inhibition , 2012, Nature.

[41]  I. Ellis,et al.  Differential oestrogen receptor binding is associated with clinical outcome in breast cancer , 2011, Nature.

[42]  Samuel Leung,et al.  FOXA1 is an independent prognostic marker for ER-positive breast cancer , 2012, Breast Cancer Research and Treatment.

[43]  Kristian Cibulskis,et al.  ContEst: estimating cross-contamination of human samples in next-generation sequencing data , 2011, Bioinform..

[44]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[45]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[46]  J. Carroll,et al.  FOXA1 is a critical determinant of Estrogen Receptor function and endocrine response , 2010, Nature Genetics.

[47]  Dennis C. Friedrich,et al.  A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries , 2011, Genome Biology.

[48]  Juan M. Vaquerizas,et al.  Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. , 2010, Genome research.

[49]  Andrew R. Gehrke,et al.  Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo , 2010, The EMBO journal.

[50]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[51]  R. Nusse,et al.  Lentiviral Vectors to Probe and Manipulate the Wnt Signaling Pathway , 2010, PloS one.

[52]  Ben S. Wittner,et al.  Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor , 2009, Proceedings of the National Academy of Sciences.

[53]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[54]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[55]  J. Maguire,et al.  Solution Hybrid Selection with Ultra-long Oligonucleotides for Massively Parallel Targeted Sequencing , 2009, Nature Biotechnology.

[56]  Jean-Stéphane Varré,et al.  Efficient and accurate P-value computation for Position Weight Matrices , 2007, Algorithms for Molecular Biology.

[57]  J. Reis-Filho,et al.  Forkhead box A1 expression in breast cancer is associated with luminal subtype and good prognosis , 2007, Journal of Clinical Pathology.

[58]  Guy Cavet,et al.  Comment on "The Consensus Coding Sequences of Human Breast and Colorectal Cancers" , 2007, Science.

[59]  Charles M Perou,et al.  FOXA1 Expression in Breast Cancer—Correlation with Luminal Subtype A and Survival , 2007, Clinical Cancer Research.

[60]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[61]  E. Ukkonen,et al.  Genome-wide Prediction of Mammalian Enhancers Based on Analysis of Transcription-Factor Binding Affinity , 2006, Cell.

[62]  C. Geyer,et al.  Fuzzy and randomized confidence intervals and P-values , 2005 .

[63]  Clifford A. Meyer,et al.  Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1 , 2005, Cell.

[64]  Kristian Helin,et al.  E2F1 is crucial for E2F‐dependent apoptosis , 2005, EMBO reports.

[65]  Wyeth W. Wasserman,et al.  JASPAR: an open-access database for eukaryotic transcription factor binding profiles , 2004, Nucleic Acids Res..

[66]  J. Nevins,et al.  Specificity in the activation and control of transcription factor E2F-dependent apoptosis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  F. Dick,et al.  pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. , 2003, Molecular cell.

[68]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[69]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[70]  Richard Routledge,et al.  Practicing safe statistics with the mid-p* , 1994 .

[71]  L. Tsai,et al.  Independent binding of the retinoblastoma protein and p107 to the transcription factor E2F , 1992, Nature.