Exponentially many perfect matchings in cubic graphs

We show that every cubic bridgeless graph G has at least 2|V(G)|/3656 perfect matchings. This confirms an old conjecture of Lovasz and Plummer.

[1]  László Lovász,et al.  Brick decompositions and the matching rank of graphs , 1982, Comb..

[2]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[3]  J. Plesník Connectivity of Regular Graphs and the Existence of 1-Factors , 1972 .

[4]  M. Voorhoeve,et al.  A lower bound for the permanents of certain (0,1)-matrices , 1978 .

[5]  Jean-Sébastien Sereni,et al.  Fullerene graphs have exponentially many perfect matchings , 2009 .

[6]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[7]  Alexander Schrijver,et al.  On Leonid Gurvits’s Proof for Permanents , 2010, Am. Math. Mon..

[8]  Denis Naddef,et al.  Rank of maximum matchings in a graph , 1982, Math. Program..

[9]  Marcin Pilipczuk,et al.  A bound on the number of perfect matchings in Klee-graphs , 2013, Discret. Math. Theor. Comput. Sci..

[10]  Daniel Král,et al.  An improved linear bound on the number of perfect matchings in cubic graphs , 2010, Eur. J. Comb..

[11]  Jean-Sébastien Sereni,et al.  A New Lower Bound on the Number of Perfect Matchings in Cubic Graphs , 2009, SIAM J. Discret. Math..

[12]  Daniel Král,et al.  A superlinear bound on the number of perfect matchings in cubic bridgeless graphs , 2012, Eur. J. Comb..

[13]  Paul D. Seymour,et al.  Perfect matchings in planar cubic graphs , 2012, Comb..

[14]  Wilfried Imrich,et al.  Explicit construction of regular graphs without small cycles , 1984, Comb..

[15]  Jane Zundel MATCHING THEORY , 2011 .

[16]  J. Petersen Die Theorie der regulären graphs , 1891 .

[17]  Alexander Schrijver,et al.  Counting 1-Factors in Regular Bipartite Graphs , 1998, J. Comb. Theory B.