Generalized Schroder Numbers and the Rotation Principle

Given a point-lattice (m+1) ×(n+1) ⊆ N ×N and l ∈ N, we determine the number of royal paths from (0,0) to (m,n) with unit steps (1,0), (0,1) and (1,1), which never go below the line y = lx, by means of the rotation principle. Compared to the method of “penetrating analysis”, this principle has here the advantage of greater clarity and

[1]  Christian Krattenthaler,et al.  Counting pairs of nonintersecting lattice paths with respect to weighted turns , 1996, Discret. Math..

[2]  Leo Moser,et al.  2487. King Paths on a Chessboard , 1955, The Mathematical Gazette.

[3]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[4]  J. Bertrand Calcul Des Probabilites , 2005 .

[5]  T. Motzkin,et al.  A problem of arrangements , 1947 .

[6]  S. G. Mohanty,et al.  Lattice Path Counting and Applications. , 1980 .

[7]  T. Narayana,et al.  Lattice Paths with Diagonal Steps , 1969, Canadian Mathematical Bulletin.

[8]  D. F. Lawden On the Solution of Linear Difference Equations , 1952, The Mathematical Gazette.

[9]  D. G. Rogers,et al.  Some correspondences involving the schröder numbers and relations , 1978 .

[10]  G. N. Raney Functional composition patterns and power series reversion , 1960 .

[11]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[12]  David Callan,et al.  Another Type of Lattice Path: 10658 , 2000, Am. Math. Mon..

[13]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..

[14]  Neil J. A. Sloane,et al.  Low–dimensional lattices. VII. Coordination sequences , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Ian P. Goulden,et al.  Maintaining the spirit of the reflection principle when the boundary has arbitrary integer slope , 2003, J. Comb. Theory, Ser. A.

[16]  Robert A. Sulanke,et al.  OBJECTS COUNTED BY THE CENTRAL DELANNOY NUMBERS , 2003 .

[17]  Christian Krattenthaler,et al.  The Enumeration of Lattice Paths With Respect to Their Number of Turns , 1997 .

[18]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[19]  Gábor Hetyei Central Delannoy Numbers and Balanced Cohen-Macaulay Complexes , 2006 .

[20]  Cyril Banderier,et al.  Why Delannoy numbers? , 2004, ArXiv.