Generalized Schroder Numbers and the Rotation Principle
暂无分享,去创建一个
[1] Christian Krattenthaler,et al. Counting pairs of nonintersecting lattice paths with respect to weighted turns , 1996, Discret. Math..
[2] Leo Moser,et al. 2487. King Paths on a Chessboard , 1955, The Mathematical Gazette.
[3] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[4] J. Bertrand. Calcul Des Probabilites , 2005 .
[5] T. Motzkin,et al. A problem of arrangements , 1947 .
[6] S. G. Mohanty,et al. Lattice Path Counting and Applications. , 1980 .
[7] T. Narayana,et al. Lattice Paths with Diagonal Steps , 1969, Canadian Mathematical Bulletin.
[8] D. F. Lawden. On the Solution of Linear Difference Equations , 1952, The Mathematical Gazette.
[9] D. G. Rogers,et al. Some correspondences involving the schröder numbers and relations , 1978 .
[10] G. N. Raney. Functional composition patterns and power series reversion , 1960 .
[11] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[12] David Callan,et al. Another Type of Lattice Path: 10658 , 2000, Am. Math. Mon..
[13] D. G. Rogers,et al. Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..
[14] Neil J. A. Sloane,et al. Low–dimensional lattices. VII. Coordination sequences , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[15] Ian P. Goulden,et al. Maintaining the spirit of the reflection principle when the boundary has arbitrary integer slope , 2003, J. Comb. Theory, Ser. A.
[16] Robert A. Sulanke,et al. OBJECTS COUNTED BY THE CENTRAL DELANNOY NUMBERS , 2003 .
[17] Christian Krattenthaler,et al. The Enumeration of Lattice Paths With Respect to Their Number of Turns , 1997 .
[18] I. Gessel,et al. Binomial Determinants, Paths, and Hook Length Formulae , 1985 .
[19] Gábor Hetyei. Central Delannoy Numbers and Balanced Cohen-Macaulay Complexes , 2006 .
[20] Cyril Banderier,et al. Why Delannoy numbers? , 2004, ArXiv.