LONGITUDINAL MOLECULAR TRAJECTORIES OF DIFFUSE GLIOMA IN ADULTS

The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear1,2. Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of diffuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specific gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at different rates across the glioma subtypes, and hypermutation was not associated with differences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner.The GLASS Consortium studies the evolutionary trajectories of 222 patients with a diffuse glioma to aid in our understanding of tumour progression and treatment failure

Colin Watts | Marion Smits | Andrew E. Sloan | Jill S. Barnholtz-Sloan | Keith L. Ligon | Christoph Bock | Joseph F. Costello | Hoon Kim | Daniel J. Brat | W. K. Alfred Yung | Kevin J. Anderson | Georg Widhalm | Ganesh Rao | Adelheid Woehrer | Laila M. Poisson | Peter S. LaViolette | Kevin C. Johnson | Mark R. Gilbert | Javad Noorbakhsh | Bernhard Radlwimmer | Peter Lichter | Tali Mazor | Gelareh Zadeh | Elizabeth J. Cochran | Jennifer Connelly | Lucy F. Stead | Michael D. Jenkinson | Peter A. E. Sillevis Smitt | Georgette Tanner | Pieter Wesseling | Chew Yee Ngan | Elizabeth B. Claus | Pratiti Bandopadhayay | Rameen Beroukhim | Erwin G. Van Meir | Raul Rabadan | Bart A. Westerman | Jeffrey H. Chuang | Antonio Iavarone | Guido Reifenberger | Frederick S. Varn | Floris P. Barthel | Anzhela D. Moskalik | Emre Kocakavuk | Olajide Abiola | Kenneth D. Aldape | Kristin D. Alfaro | Donat Alpar | Samirkumar B. Amin | David M. Ashley | Priscilla K. Brastianos | Andrew R. Brodbelt | Alexander F. Bruns | Ketan R. Bulsara | Aruna Chakrabarty | Arnab Chakravarti | Gaetano Finocchiaro | Michael N. Fletcher | Pim J. French | Hui K. Gan | Peter V. Gould | Matthew R. Grimmer | Azzam Ismail | Mustafa Khasraw | Mathilde C. M. Kouwenhoven | Meihong Li | Allison K. Lowman | Tathiane M. Malta | Kerrie L. McDonald | Annette M. Molinaro | Do-Hyun Nam | Naema Nayyar | Ho Keung Ng | Simone P. Niclou | Johanna M. Niers | Houtan Noushmehr | D. Ryan Ormond | Chul-Kee Park | Jason K. Sa | Michael Schuster | Brian L. Shaw | Susan C. Short | Hiromichi Suzuki | Ghazaleh Tabatabai | Michael Weller | Jason T. Huse | John F. De Groot | Roel G. W. Verhaak

[1]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[2]  N. Hacohen,et al.  Molecular and Genetic Properties of Tumors Associated with Local Immune Cytolytic Activity , 2015, Cell.

[3]  O. Lund,et al.  NetMHCpan, a method for MHC class I binding prediction beyond humans , 2008, Immunogenetics.

[4]  Thomas J. Raub,et al.  Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft , 2015, Drug Metabolism and Disposition.

[5]  E. Mardis,et al.  pVAC-Seq: A genome-guided in silico approach to identifying tumor neoantigens , 2016, Genome Medicine.

[6]  In-Hee Lee,et al.  Spatiotemporal Evolution of the Primary Glioblastoma Genome. , 2015, Cancer cell.

[7]  Ash A. Alizadeh,et al.  Robust enumeration of cell subsets from tissue expression profiles , 2015, Nature Methods.

[8]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[9]  Alyssa R. Richman,et al.  Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial , 2018, Nature.

[10]  Satoru Miyano,et al.  Mutational landscape and clonal architecture in grade II and III gliomas , 2015, Nature Genetics.

[11]  Tracy T Batchelor,et al.  A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. , 2006, Cancer research.

[12]  Lucy F. Stead,et al.  Glioma through the looking GLASS: molecular evolution of diffuse gliomas and the Glioma Longitudinal Analysis Consortium , 2018, Neuro-oncology.

[13]  E. Lander,et al.  Assessing the significance of chromosomal aberrations in cancer: Methodology and application to glioma , 2007, Proceedings of the National Academy of Sciences.

[14]  D. Haussler,et al.  The Somatic Genomic Landscape of Glioblastoma , 2013, Cell.

[15]  David T. W. Jones,et al.  Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge , 2014, Nature Reviews Cancer.

[16]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[17]  M. Stratton,et al.  Universal Patterns of Selection in Cancer and Somatic Tissues , 2018, Cell.

[18]  Sally Harrison,et al.  How to analyse the spatiotemporal tumour samples needed to investigate cancer evolution: A case study using paired primary and recurrent glioblastoma , 2018, International journal of cancer.

[19]  G. Mayhew,et al.  Tracking Cancer Evolution Reveals Constrained Routes to Metastases: TRACERx Renal , 2018, Cell.

[20]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[21]  Chibo Hong,et al.  DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors. , 2015, Cancer cell.

[22]  Mariella G. Filbin,et al.  Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq , 2017, Science.

[23]  Walter J. Curran,et al.  Radiation plus Procarbazine, CCNU, and Vincristine in Low-Grade Glioma. , 2016, The New England journal of medicine.

[24]  P. Van Loo,et al.  Timing somatic events in the evolution of cancer , 2018, Genome Biology.

[25]  Marc J. Williams,et al.  Identification of neutral tumor evolution across cancer types , 2016, Nature Genetics.

[26]  Brigitta G. Baumert,et al.  Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma , 2016, The Lancet. Oncology.

[27]  Rebecca A Betensky,et al.  Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. , 2011, Cancer cell.

[28]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[29]  G. Rancati,et al.  Aneuploidy and chromosomal instability in cancer: a jackpot to chaos , 2015, Cell Division.

[30]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[31]  Gabriele Schackert,et al.  Evolutionary Trajectories of IDHWT Glioblastomas Reveal a Common Path of Early Tumorigenesis Instigated Years ahead of Initial Diagnosis. , 2019, Cancer cell.

[32]  F. Ducray,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[33]  Edward F. Chang,et al.  Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. , 2017, Cancer cell.

[34]  Erwin G. Van Meir,et al.  Overcoming therapeutic resistance in glioblastoma: the way forward. , 2017, The Journal of clinical investigation.

[35]  In-Hee Lee,et al.  Clonal evolution of glioblastoma under therapy , 2016, Nature Genetics.

[36]  Ashton C. Berger,et al.  Genomic and Functional Approaches to Understanding Cancer Aneuploidy. , 2018, Cancer cell.

[37]  Emanuel F Petricoin,et al.  Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma , 2018, Nature Genetics.

[38]  G. Reifenberger,et al.  The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary , 2016, Acta Neuropathologica.

[39]  Steven J. M. Jones,et al.  Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma , 2016, Cell.

[40]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[41]  C. Swanton,et al.  Resolving genetic heterogeneity in cancer , 2019, Nature Reviews Genetics.

[42]  Benjamin Schubert,et al.  OptiType: precision HLA typing from next-generation sequencing data , 2014, Bioinform..

[43]  Charles Swanton,et al.  Intratumor Heterogeneity: Seeing the Wood for the Trees , 2012, Science Translational Medicine.

[44]  Sven Rahmann,et al.  Snakemake--a scalable bioinformatics workflow engine. , 2012, Bioinformatics.

[45]  Yuchen Jiao,et al.  Mutations in CIC and FUBP1 Contribute to Human Oligodendroglioma , 2011, Science.

[46]  Sohrab P. Shah,et al.  TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data , 2014, Genome research.

[47]  Nicolai J. Birkbak,et al.  Neoantigen-directed immune escape in lung cancer evolution , 2019, Nature.

[48]  Pieter Wesseling,et al.  International Society of Neuropathology‐Haarlem Consensus Guidelines for Nervous System Tumor Classification and Grading , 2014, Brain pathology.

[49]  V. P. Collins,et al.  Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics , 2013, Proceedings of the National Academy of Sciences.

[50]  Tao Jiang,et al.  Mutational Landscape of Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor , 2018, Cell.

[51]  Pieter Wesseling,et al.  Reconstructing the molecular life history of gliomas , 2017, bioRxiv.

[52]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[53]  R. Schreiber,et al.  Cancer immunoediting: from immunosurveillance to tumor escape , 2002, Nature Immunology.

[54]  S. Stevanović,et al.  A vaccine targeting mutant IDH1 induces antitumour immunity , 2014, Nature.

[55]  Steven J. M. Jones,et al.  Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma , 2014, Science.

[56]  Sven Rahmann,et al.  Genome analysis , 2022 .

[57]  Hannah Carter,et al.  Evolutionary Pressure against MHC Class II Binding Cancer Mutations , 2018, Cell.

[58]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[59]  A. Bouchard-Côté,et al.  PyClone: statistical inference of clonal population structure in cancer , 2014, Nature Methods.

[60]  H. Aburatani,et al.  Reduced Neoantigen Expression Revealed by Longitudinal Multiomics as a Possible Immune Evasion Mechanism in Glioma , 2019, Cancer Immunology Research.

[61]  Hao Xiong,et al.  Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study , 2017, Cancer Chemotherapy and Pharmacology.

[62]  Marc J. Williams,et al.  Quantification of subclonal selection in cancer from bulk sequencing data , 2018, Nature Genetics.

[63]  Susan M. Chang,et al.  Temozolomide-associated hypermutation in gliomas. , 2018, Neuro-oncology.

[64]  Angela E. Leek,et al.  Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution , 2017, Cell.

[65]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[66]  Jill S Barnholtz-Sloan,et al.  Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution , 2015, Genome research.

[67]  Ken Chen,et al.  A survey of intragenic breakpoints in glioblastoma identifies a distinct subset associated with poor survival. , 2013, Genes & development.