Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo

[1]  J. Mozrzymas,et al.  Matrix metalloprotease activity shapes the magnitude of EPSPs and spike plasticity within the hippocampal CA3 network , 2016, Hippocampus.

[2]  Amanda L. Loshbaugh,et al.  Labelling and optical erasure of synaptic memory traces in the motor cortex , 2015, Nature.

[3]  Claire E McKellar,et al.  Rational design of a high-affinity, fast, red calcium indicator R-CaMP2 , 2014, Nature Methods.

[4]  Hiroaki Takehara,et al.  Lab-on-a-brain: Implantable micro-optical fluidic devices for neural cell analysis in vivo , 2014, Scientific Reports.

[5]  Eduardo D. Martín,et al.  Structural and Functional Plasticity of Astrocyte Processes and Dendritic Spine Interactions , 2014, The Journal of Neuroscience.

[6]  K. Tabuchi,et al.  Enhanced synapse remodelling as a common phenotype in mouse models of autism , 2014, Nature Communications.

[7]  P. Hickmott,et al.  Genetic Removal of Matrix Metalloproteinase 9 Rescues the Symptoms of Fragile X Syndrome in a Mouse Model , 2014, The Journal of Neuroscience.

[8]  W. Gan,et al.  Sleep promotes branch-specific formation of dendritic spines after learning , 2014, Science.

[9]  H. Zoghbi,et al.  Dendritic Arborization and Spine Dynamics Are Abnormal in the Mouse Model of MECP2 Duplication Syndrome , 2013, The Journal of Neuroscience.

[10]  A. Dunaevsky,et al.  Altered Structural and Functional Synaptic Plasticity with Motor Skill Learning in a Mouse Model of Fragile X Syndrome , 2013, The Journal of Neuroscience.

[11]  Y. Goda,et al.  The interplay between Hebbian and homeostatic synaptic plasticity , 2013, The Journal of cell biology.

[12]  Jun Noguchi,et al.  GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling , 2013, Nature Neuroscience.

[13]  Dalyir I. Pretto,et al.  High MMP‐9 activity levels in fragile X syndrome are lowered by minocycline , 2013, American journal of medical genetics. Part A.

[14]  Kazuki Obashi,et al.  Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon , 2013, The European journal of neuroscience.

[15]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[16]  Jakub Wlodarczyk,et al.  Matrix Metalloproteinases Regulate the Formation of Dendritic Spine Head Protrusions during Chemically Induced Long-Term Potentiation , 2013, PloS one.

[17]  M. Bear,et al.  Fragile X mental retardation protein and synaptic plasticity , 2013, Molecular Brain.

[18]  H. Kasai,et al.  Distinct initial SNARE configurations underlying the diversity of exocytosis. , 2012, Physiological reviews.

[19]  E. Dent,et al.  BDNF-Induced Increase of PSD-95 in Dendritic Spines Requires Dynamic Microtubule Invasions , 2011, The Journal of Neuroscience.

[20]  Jakub Wlodarczyk,et al.  Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology , 2011, Journal of Cell Science.

[21]  Conor Liston,et al.  Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo , 2011, Proceedings of the National Academy of Sciences.

[22]  U Valentin Nägerl,et al.  STED nanoscopy of actin dynamics in synapses deep inside living brain slices. , 2011, Biophysical journal.

[23]  G. Ellis‐Davies,et al.  In vivo two‐photon uncaging of glutamate revealing the structure–function relationships of dendritic spines in the neocortex of adult mice , 2011, The Journal of physiology.

[24]  W. Gan,et al.  Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome , 2010, Proceedings of the National Academy of Sciences.

[25]  Sho Yagishita,et al.  Learning rules and persistence of dendritic spines , 2010, The European journal of neuroscience.

[26]  C. Portera-Cailliau,et al.  Delayed Stabilization of Dendritic Spines in Fragile X Mice , 2010, The Journal of Neuroscience.

[27]  W. Gan,et al.  Stably maintained dendritic spines are associated with lifelong memories , 2009, Nature.

[28]  K. Svoboda,et al.  Experience-dependent structural synaptic plasticity in the mammalian brain , 2009, Nature Reviews Neuroscience.

[29]  N. Ziv,et al.  Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity , 2009, PLoS biology.

[30]  H. Kasai,et al.  Principles of Long-Term Dynamics of Dendritic Spines , 2008, The Journal of Neuroscience.

[31]  Qiang Zhou,et al.  Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately , 2008, Proceedings of the National Academy of Sciences.

[32]  T. Bonhoeffer,et al.  Experience leaves a lasting structural trace in cortical circuits , 2008, Nature.

[33]  Michelle N. Ngo,et al.  Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model , 2008, Journal of Medical Genetics.

[34]  C. Nicholson,et al.  Diffusion in brain extracellular space. , 2008, Physiological reviews.

[35]  Jun Noguchi,et al.  The Subspine Organization of Actin Fibers Regulates the Structure and Plasticity of Dendritic Spines , 2008, Neuron.

[36]  Mark F Bear,et al.  Smaller Dendritic Spines, Weaker Synaptic Transmission, but Enhanced Spatial Learning in Mice Lacking Shank1 , 2008, The Journal of Neuroscience.

[37]  Christina Gross,et al.  Dysregulated Metabotropic Glutamate Receptor-Dependent Translation of AMPA Receptor and Postsynaptic Density-95 mRNAs at Synapses in a Mouse Model of Fragile X Syndrome , 2007, The Journal of Neuroscience.

[38]  S. Grant,et al.  A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability , 2007, Nature Neuroscience.

[39]  Karel Svoboda,et al.  Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo , 2006, PLoS biology.

[40]  E. Schuman,et al.  Miniature Neurotransmission Stabilizes Synaptic Function via Tonic Suppression of Local Dendritic Protein Synthesis , 2006, Cell.

[41]  M. Zhuo,et al.  Deficits in Trace Fear Memory and Long-Term Potentiation in a Mouse Model for Fragile X Syndrome , 2005, The Journal of Neuroscience.

[42]  Leonardo Restivo,et al.  Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Y. Imai,et al.  Visualization of microglia in living tissues using Iba1‐EGFP transgenic mice , 2005, Journal of neuroscience research.

[44]  Yi Zuo,et al.  Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex , 2005, Nature.

[45]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.

[46]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[47]  Peter K. Todd,et al.  The fragile X mental retardation protein is required for type-I metabotropic glutamate receptor-dependent translation of PSD-95 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[49]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[50]  B. Bean,et al.  Interactions among Toxins That Inhibit N-type and P-type Calcium Channels , 2002, The Journal of general physiology.

[51]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[52]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[53]  R. Yuste,et al.  Developmental regulation of spine motility in the mammalian central nervous system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  H. Okado,et al.  Continual remodeling of postsynaptic density and its regulation by synaptic activity , 1999, Nature Neuroscience.

[55]  Carol A. Mason,et al.  TrkB Signaling Modulates Spine Density and Morphology Independent of Dendrite Structure in Cultured Neonatal Purkinje Cells , 1998, The Journal of Neuroscience.

[56]  G. Wang,et al.  Selective peptide antagonist of the class E calcium channel from the venom of the tarantula Hysterocrates gigas. , 1998, Biochemistry.

[57]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[58]  I. Weiler,et al.  Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Guy Nagels,et al.  Fmr1 knockout mice: A model to study fragile X mental retardation , 1994, Cell.

[60]  M. Lazdunski,et al.  Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Rapoport Neuroimaging Clinics of North America , 1992, Neurology.

[62]  K. Svoboda,et al.  Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window , 2009, Nature Protocols.