Probing the Influence of SSZ‐13 Zeolite Pore Hierarchy in Methanol‐to‐Olefins Catalysis by Using Nanometer Accuracy by Stochastic Chemical Reactions Fluorescence Microscopy and Positron Emission Profiling

An understanding of the role of the hierarchical pore architecture of SSZ‐13 zeolites on the catalytic performance in the methanol‐to‐olefins (MTO) reaction is crucial to guide the design of better catalysts. We investigated the influence of the space velocity on the performance of a microporous SSZ‐13 zeolite and several hierarchically structured SSZ‐13 zeolites. Single catalytic turnovers, as recorded by nanometer accuracy by using stochastic chemical reactions (NASCA) fluorescence microscopy verified that the hierarchical zeolites contain pores larger than the 0.38 nm apertures native to SSZ‐13 zeolite. The amount of fluorescent events correlated well with the additional pore volume available because of the hierarchical structuring of the zeolite. Positron emission tomography (PET) using 11C‐labeled methanol was used to map the 2 D spatial distribution of the deposits formed during the MTO reaction in the catalyst bed. We used PET imaging to demonstrate that hierarchical structuring not only improves the utilization of the available microporous cages of SSZ‐13 but also that the aromatic hydrocarbon pool species are involved in more turnovers before they condense into larger multiring structures that deactivate the catalyst.

[1]  M. Roeffaers,et al.  Single Molecule Nanospectroscopy Visualizes Proton-Transfer Processes within a Zeolite Crystal , 2016, Journal of the American Chemical Society.

[2]  J. Jagiello,et al.  Quantifying the Complex Pore Architecture of Hierarchical Faujasite Zeolites and the Impact on Diffusion , 2016 .

[3]  B. Weckhuysen,et al.  Trimodal Porous Hierarchical SSZ-13 Zeolite with Improved Catalytic Performance in the Methanol-to-Olefins Reaction , 2016 .

[4]  B. Weckhuysen,et al.  Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite. , 2016, Chemical communications.

[5]  U. Olsbye,et al.  Conclusive Evidence for Two Unimolecular Pathways to Zeolite‐Catalyzed De‐alkylation of the Heptamethylbenzenium Cation , 2015 .

[6]  S. Mitchell,et al.  Structural analysis of hierarchically organized zeolites , 2015, Nature Communications.

[7]  K. D. de Jong,et al.  Tailoring and visualizing the pore architecture of hierarchical zeolites. , 2015, Chemical Society reviews.

[8]  M. Roeffaers,et al.  Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming , 2015, Journal of the American Chemical Society.

[9]  Zhongmin Liu,et al.  Methanol to Olefins (MTO): From Fundamentals to Commercialization , 2015 .

[10]  M. Roeffaers,et al.  High-Resolution Single-Molecule Fluorescence Imaging of Zeolite Aggregates within Real-Life Fluid Catalytic Cracking Particles** , 2014, Angewandte Chemie.

[11]  M. Roeffaers,et al.  Rationalizing Inter- and Intracrystal Heterogeneities in Dealuminated Acid Mordenite Zeolites by Stimulated Raman Scattering Microscopy Correlated with Super-resolution Fluorescence Microscopy , 2014, ACS nano.

[12]  J. Hofmann,et al.  Synthesis of hierarchical zeolites using an inexpensive mono-quaternary ammonium surfactant as mesoporogen. , 2014, Chemical communications.

[13]  J. Pérez‐Ramírez,et al.  Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts , 2014, Nature Communications.

[14]  J. Molnár,et al.  Three-Dimensional Imaging of Surface Chemical Processes in Catalysis Using High-Resolution Positron Emission Tomography. , 2013, ChemPlusChem.

[15]  B. Weckhuysen,et al.  X‐Ray Imaging of SAPO‐34 Molecular Sieves at the Nanoscale: Influence of Steaming on the Methanol‐to‐Hydrocarbons Reaction , 2013 .

[16]  E. Hensen,et al.  Mesoporous SSZ-13 zeolite prepared by a dual-template method with improved performance in the methanol-to-olefins reaction , 2013 .

[17]  Peter Dedecker,et al.  Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy , 2012, Journal of biomedical optics.

[18]  P. Magusin,et al.  Dual template synthesis of a highly mesoporous SSZ-13 zeolite with improved stability in the methanol-to-olefins reaction. , 2012, Chemical communications.

[19]  K. Lillerud,et al.  Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. , 2012, Angewandte Chemie.

[20]  Unni Olsbye,et al.  Umwandlung von Methanol in Kohlenwasserstoffe: Wie Zeolith‐Hohlräume und Porengröße die Produktselektivität bestimmen , 2012 .

[21]  J. Schröder,et al.  Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. , 2011, Chemosphere.

[22]  B. Weckhuysen,et al.  Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH , 2010 .

[23]  M. Roeffaers,et al.  Super-resolution reactivity mapping of nanostructured catalyst particles. , 2009, Angewandte Chemie.

[24]  Natasha Gilbert,et al.  Environment: The disappearing nutrient , 2009, Nature.

[25]  Fernando Ramôa Ribeiro,et al.  Prevention of zeolite deactivation by coking , 2009 .

[26]  Silvia Bordiga,et al.  The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology , 2009 .

[27]  K. Lillerud,et al.  Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH , 2008 .

[28]  Wei Wang,et al.  Reactivity of surface alkoxy species on acidic zeolite catalysts. , 2008, Accounts of chemical research.

[29]  Zhongmin Liu,et al.  Co-reaction of Ethene and Methylation Agents over SAPO-34 and ZSM-22 , 2008 .

[30]  M. Roeffaers,et al.  Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting , 2006, Nature.

[31]  M. Abraha,et al.  Methanol conversion on SAPO-34: reaction condition for fixed-bed reactor , 2004 .

[32]  Weiguo Song,et al.  The mechanism of methanol to hydrocarbon catalysis. , 2003, Accounts of chemical research.

[33]  Mohammad Asadullah,et al.  Biomass Gasification to Hydrogen and Syngas at Low Temperature: Novel Catalytic System Using Fluidized-Bed Reactor , 2002 .

[34]  M. Bjørgen,et al.  The conversion of methanol to hydrocarbons over dealuminated zeolite H-beta , 2002 .

[35]  Weiguo Song,et al.  Supramolecular origins of product selectivity for methanol-to-olefin catalysis on HSAPO-34. , 2001, Journal of the American Chemical Society.

[36]  Paul T. Barger,et al.  The characteristics of SAPO-34 which influence the conversion of methanol to light olefins , 1999 .

[37]  A. Holmen,et al.  Influence of Coke Deposition on Selectivity in Zeolite Catalysis , 1997 .

[38]  R. A. V. Santen,et al.  In‐situ‐Nachweis transienter Phänomene bei Reaktionen an Zeolithkatalysatoren mit Hilfe der Positronenemission , 1996 .

[39]  R. A. Santen,et al.  In Situ Observation of Transient Reaction Phenomena Occurring on Zeolite Catalysts with the Aid of Positron Emission Profiling , 1996 .

[40]  G. Froment,et al.  Catalytic conversion of methanol into light alkenes on mordenite-like zeolites , 1993 .

[41]  L. Schmidt,et al.  Production of Syngas by Direct Catalytic Oxidation of Methane , 1993, Science.

[42]  Clarence Dayton Chang,et al.  The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts: II. Pressure effects , 1977 .

[43]  R. Ryoo,et al.  Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process , 2010 .