Generalized parallel sampling

[1]  J. Schofield,et al.  Extended state-space Monte Carlo methods. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  A Mitsutake,et al.  Generalized-ensemble algorithms for molecular simulations of biopolymers. , 2000, Biopolymers.

[3]  G. Parisi,et al.  The use of optimized Monte Carlo methods for studying spin glasses , 2000, cond-mat/0011039.

[4]  I. Andricioaei,et al.  IV. ComputationalMetho ds for the Simulation of Classical and Quantum Many Body Systems Arising from Nonextensive Thermostatistics , 2001 .

[5]  Many-body effects on the melting and dynamics of small clusters , 2000 .

[6]  D. L. Freeman,et al.  Phase changes in 38-atom Lennard-Jones clusters. II. A parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical ensembles , 2000, physics/0003072.

[7]  D. L. Freeman,et al.  Phase changes in 38-atom Lennard-Jones clusters. I. A parallel tempering study in the canonical ensemble , 2000, physics/0003068.

[8]  Youngshang Pak,et al.  Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems , 2000 .

[9]  Shaomeng Wang,et al.  Folding of a 16-residue helical peptide using molecular dynamics simulation with Tsallis effective potential , 1999 .

[10]  Benedict Leimkuhler,et al.  Computational Molecular Dynamics: Challenges, Methods, Ideas , 1999, Computational Molecular Dynamics.

[11]  John E. Straub,et al.  Exploiting Tsallis Statistics , 1999, Computational Molecular Dynamics.

[12]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[13]  B. Boghosian Navier-Stokes equations for generalized thermostatistics , 1998, cond-mat/9812154.

[14]  Y. Okamoto,et al.  Stochastic dynamics simulations in a new generalized ensemble , 1998, physics/9810052.

[15]  I. Andricioaei,et al.  On Monte Carlo and molecular dynamics methods inspired by Tsallis statistics: Methodology, optimization, and application to atomic clusters , 1997 .

[16]  Y. Okamoto,et al.  GENERALIZED-ENSEMBLE MONTE CARLO METHOD FOR SYSTEMS WITH ROUGH ENERGY LANDSCAPE , 1997, cond-mat/9710306.

[17]  Numerical Simulations of Spin Glass Systems , 1997, cond-mat/9701016.

[18]  E. Marinari Optimized monte carlo methods , 1996, cond-mat/9612010.

[19]  H. Takayama,et al.  APPLICATION OF AN EXTENDED ENSEMBLE METHOD TO SPIN GLASSES , 1996 .

[20]  Straub,et al.  Generalized simulated annealing algorithms using Tsallis statistics: Application to conformational optimization of a tetrapeptide. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[22]  B. Boghosian,et al.  Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  S. Whittington,et al.  Monte carlo study of the interacting self-avoiding walk model in three dimensions , 1996 .

[24]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[25]  Rehberg,et al.  Simulated-tempering procedure for spin-glass simulations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  C. J. Tsai,et al.  Use of an eigenmode method to locate the stationary points on the potential energy surfaces of selected argon and water clusters , 1993 .

[27]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[28]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[29]  C. Tsallis,et al.  Generalized statistical mechanics : connection with thermodynamics , 1991 .

[30]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[31]  Thirumalai,et al.  Ergodic convergence properties of supercooled liquids and glasses. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[32]  D. L. Freeman,et al.  Reducing Quasi-Ergodic Behavior in Monte Carlo Simulations by J-Walking: Applications to Atomic Clusters , 1990 .

[33]  Probes of equipartition in nonlinear Hamiltonian systems , 1989 .

[34]  Thirumalai,et al.  Ergodic behavior in supercooled liquids and in glasses. , 1989, Physical review. A, General physics.

[35]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[36]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[37]  J. Valleau,et al.  A Guide to Monte Carlo for Statistical Mechanics: 2. Byways , 1977 .