Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets

We define counting classes #PR and #PC in the Blum-Shub-Smale setting of computations over the real or complex numbers, respectively. The problems of counting the number of solutions of systems of polynomial inequalities over R, or of systems of polynomial equalities over C, respectively, turn out to be natural complete problems in these classes. We investigate to what extent the new counting classes capture the complexity of computing basic topological invariants of semialgebraic sets (over R) and algebraic sets (over C). We prove that the problem of computing the Euler-Yao characteristic of semialgebraic sets is FPR#PR-complete, and that the problem of computing the geometric degree of complex algebraic sets is FPC#PC-complete. We also define new counting complexity classes in the classical Turing model via taking Boolean parts of the classes above, and show that the problems to compute the Euler characteristic and the geometric degree of (semi)algebraic sets given by integer polynomials are complete in these classes. We complement the results in the Turing model by proving, for all k ∈ N, the FPSPACE-hardness of the problem of computing the kth Betti number of the set of real zeros of a given integer polynomial. This holds with respect to the singular homology as well as for the Borel-Moore homology.

[1]  Pascal Koiran,et al.  The Real Dimension Problem Is NPR-Complete , 1999, J. Complex..

[2]  Klaus Meer Counting problems over the reals , 2000, Theor. Comput. Sci..

[3]  N. Steenrod Topology of Fibre Bundles , 1951 .

[4]  D. Grigor'ev Complexity of deciding Tarski algebra , 1988 .

[5]  Saugata Basu,et al.  On Bounding the Betti Numbers and Computing the Euler Characteristic of Semi-Algebraic Sets , 1996, STOC '96.

[6]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[7]  José L. Balcázar,et al.  Structural complexity 1 , 1988 .

[8]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[9]  Eric Bach Sheaf Cohomology is #P-hard , 1999, J. Symb. Comput..

[10]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[11]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[12]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[13]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[14]  S. Basu,et al.  COMPUTING ROADMAPS OF SEMI-ALGEBRAIC SETS ON A VARIETY , 1999 .

[15]  László Babai,et al.  Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes , 1988, J. Comput. Syst. Sci..

[16]  Andrew Chi-Chih Yao Algebraic Decision Trees and Euler Characteristics , 1992, FOCS.

[17]  Peter Bürgisser,et al.  The Complexity of Computing the Hilbert Polynomial of Smooth Equidimensional Complex Projective Varieties , 2005, Found. Comput. Math..

[18]  E. Rannou,et al.  The Complexity of Stratification Computation , 1998, Discret. Comput. Geom..

[19]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[20]  Andrew Chi-Chih Yao Algebraic Decision Trees and Euler Characteristics , 1995, Theor. Comput. Sci..

[21]  Pascal Koiran Randomized and deterministic algorithms for the dimension of algebraic varieties , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[22]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[23]  Dima Grigoriev,et al.  On the Power of Real Turing Machines Over Binary Inputs , 1997, SIAM J. Comput..

[24]  Joos Heintz,et al.  Description of the connected components of a semialgebraic set in single exponential time , 1994, Discret. Comput. Geom..

[25]  V. Strassen Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .

[26]  Felipe Cucker,et al.  Counting Complexity Classes for Numeric Computations I: Semilinear Sets , 2003, SIAM J. Comput..

[27]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[28]  J. C. Moore,et al.  Homology theory for locally compact spaces. , 1960 .

[29]  J. Milnor On the Betti numbers of real varieties , 1964 .

[30]  John H. Reif,et al.  Complexity of the mover's problem and generalizations , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[31]  Gabriel M. Kuper,et al.  Constraint Databases , 2010, Springer Berlin Heidelberg.

[32]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[33]  Felipe Cucker On the Complexity of Quantifier Elimination: the Structural Approach , 1993, Comput. J..

[34]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[35]  Joos Heintz,et al.  On the Intrinsic Complexity of Elimination Theory , 1993, J. Complex..

[36]  Floris Geerts Expressing the box cone radius in the relational calculus with real polynomial constraints , 2003, Discret. Comput. Geom..

[37]  Pascal Koiran Elimination of Parameters in the Polynomial Hierarchy , 1999, Theor. Comput. Sci..

[38]  Friedrich Hirzebruch Topological methods in algebraic geometry , 1966 .

[39]  J. Milnor Singular points of complex hypersurfaces , 1968 .

[40]  J. Reif Complexity of the Generalized Mover's Problem. , 1985 .

[41]  M-F Roy,et al.  Géométrie algébrique réelle , 1987 .

[42]  I. Shafarevich Basic algebraic geometry , 1974 .

[43]  Marek Karpinski,et al.  On real Turing machines that toss coins , 1995, STOC '95.

[44]  Ernst W. Mayr,et al.  Some Complexity Results for Polynomial Ideals , 1997, J. Complex..

[45]  Peter Bürgisser,et al.  Completeness and Reduction in Algebraic Complexity Theory , 2000, Algorithms and computation in mathematics.

[46]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[47]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[48]  David Eisenbud,et al.  An Algebraic Formula for the Degree of a C ∞ Map Germ , 1977 .

[49]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[50]  Leslie G. Valiant,et al.  Completeness classes in algebra , 1979, STOC.

[51]  Hoon Hong Special Issue Editorial: Computational Quantifier Elimination , 1993, Comput. J..

[52]  Pascal Koiran A Weak Version of the Blum, Shub, and Smale Model , 1997, J. Comput. Syst. Sci..

[53]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[54]  Pascal Koiran Elimination of Constants from Machines over Algebraically Closed Fields , 1997, J. Complex..

[55]  Pascal Koiran Computing over the Reals with Addition and Order , 1994, Theor. Comput. Sci..

[56]  Z. Szafraniec On the Euler characteristic of analytic and algebraic sets , 1986 .

[57]  Nicolai Vorobjov,et al.  Counting connected components of a semialgebraic set in subexponential time , 1992, computational complexity.

[58]  Felipe Cucker,et al.  Algebraic Settings for the Problem “P ≠ NP?” , 1998 .

[59]  Micha Sharir,et al.  Planning, geometry, and complexity of robot motion , 1986 .

[60]  R. Ho Algebraic Topology , 2022 .

[61]  Imre Lakatos,et al.  On the Uses of Rigorous Proof. (Book Reviews: Proofs and Refutations. The Logic of Mathematical Discovery) , 1977 .

[62]  Felipe Cucker,et al.  Computing over the Reals with Addition and Order: Higher Complexity Classes , 1995, J. Complex..

[63]  John W. Bruce Euler Characteristics of Real Varieties , 1990 .

[64]  André Galligo,et al.  Precise sequential and parallel complexity bounds for quantifier elimination over algebraically closed fields , 1990 .

[65]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[66]  J. Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I , 1989 .

[67]  Felipe Cucker,et al.  Counting Complexity Classes for Numeric Computations. III: Complex Projective Sets , 2005, Found. Comput. Math..

[68]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[69]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[70]  Peter Bürgisser Cook's versus Valiant's hypothesis , 2000, Theor. Comput. Sci..

[71]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..