An Introduction to the Controllability of Partial Differential Equations
暂无分享,去创建一个
[1] Jean-Pierre Kahane,et al. Pseudo-périodicité et séries de Fourier lacunaires , 1962 .
[2] Jerzy Zabczyk,et al. Mathematical control theory - an introduction , 1992, Systems & Control: Foundations & Applications.
[3] David L. Russell,et al. A Unified Boundary Controllability Theory for Hyperbolic and Parabolic Partial Differential Equations , 1973 .
[4] 김정기,et al. Propagation , 1994, Encyclopedia of Evolutionary Psychological Science.
[5] D. L. Russell,et al. Exact controllability theorems for linear parabolic equations in one space dimension , 1971 .
[6] C. Baiocchi,et al. Ingham-Beurling type theorems with weakened gap conditions , 2002 .
[7] On the propagation of confined waves along the geodesics , 1990 .
[8] Enrique Zuazua,et al. On the lack of null-controllability of the heat equation on the half-line , 2000 .
[9] Enrique Zuazua,et al. Null and approximate controllability for weakly blowing up semilinear heat equations , 2000 .
[10] Scott W. Hansen. Bounds on functions biorthogonal to sets of complex exponentials; control of damped elastic systems☆ , 1991 .
[11] A. Ingham. Some trigonometrical inequalities with applications to the theory of series , 1936 .
[12] D. L. Russell,et al. Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations , 1974 .
[13] Jean-Pierre Puel,et al. Approximate controllability of the semilinear heat equation , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[14] Brice Allibert. ANALYTIC CONTROLLABILITY OF THE WAVE EQUATION OVER A CYLINDER , 1999 .
[15] Goong Chen,et al. Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications , 2001 .
[16] Enrique Zuazua,et al. Controllability of the linear system of thermoelasticity , 1995 .
[17] Xu Zhang,et al. Explicit observability estimate for the wave equation with potential and its application , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[18] Tataru Daniel,et al. Unique continuation for solutions to pde's; between hörmander's theorem and holmgren' theorem , 1995 .
[19] E B Lee,et al. Foundations of optimal control theory , 1967 .
[20] E. Cheney. Introduction to approximation theory , 1966 .
[21] G. Lebeau,et al. Contróle Exact De Léquation De La Chaleur , 1995 .
[22] Daniel Tataru,et al. A priori estimates of Carleman's type in domains with boundary , 1994 .
[23] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[24] E. Zuazua,et al. Contrôlabilité approchée de l'équation de la chaleur linéaire avec des contrôles de norme L∞ minimale , 1993 .
[25] A. Fursikov,et al. Exact boundary zero controllability of three-dimensional Navier-Stokes equations , 1995 .
[26] Enrique Zuazua,et al. The cost of approximate controllability for heat equations: the linear case , 2000, Advances in Differential Equations.
[27] Cathleen S. Morawetz,et al. Notes on Time Decay and Scattering for Some Hyperbolic Problems , 1987 .
[28] S. Kaczmarz,et al. Theorie der Orthogonalreihen , 1936 .
[29] Sorin Micu,et al. Uniform boundary controllability of a semi-discrete 1-D wave equation , 2002, Numerische Mathematik.
[30] J. Ball. Strongly continuous semigroups, weak solutions, and the variation of constants formula , 1977 .
[31] Antonio López Montes. Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density , 2002 .
[32] Jacques-Louis Lions. Contrôlabilite exacte et homogénéisation (I) , 1988 .
[33] C. Bardos,et al. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary , 1992 .
[34] Axel Osses. A Rotated Multiplier Applied to the Controllability of Waves, Elasticity, and Tangential Stokes Control , 2001, SIAM J. Control. Optim..
[35] Paul Malliavin,et al. On the closure of characters and the zeros of entire functions , 1967 .
[36] E. Zuazua. Finite dimensional null controllability for the semilinear heat equation , 1997 .
[37] Marius Tucsnak. Regularity and Exact Controllability for a Beam With Piezoelectric Actuator , 1996 .
[38] Enrique Zuazua,et al. Exact controllability for the semilinear wave equation , 1990 .
[39] Enrique Zuazua,et al. Null‐Controllability of a System of Linear Thermoelasticity , 1998 .
[40] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[41] Enrique Zuazua,et al. Some Problems and Results on the Controllability of Partial Differential Equations , 1998 .
[42] N. Wiener,et al. Fourier Transforms in the Complex Domain , 1934 .
[43] Lop Fat Ho. Observabilité frontière de l'équation des ondes , 1986 .
[44] Gerd Grubb,et al. PROBLÉMES AUX LIMITES NON HOMOGÉNES ET APPLICATIONS , 1969 .
[45] Xu Zhang,et al. Explicit Observability Inequalities for the Wave Equation with Lower Order Terms by Means of Carleman Inequalities , 2000, SIAM J. Control. Optim..
[46] Enrique Zuazua,et al. CONTROLLABILITY OF PARTIAL DIFFERENTIAL EQUATIONS AND ITS SEMI-DISCRETE APPROXIMATIONS , 2002 .
[47] Sergei Avdonin,et al. Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems , 1995 .
[48] H. Fattorini. Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation , 1977 .
[49] Josephus Hulshof,et al. Linear Partial Differential Equations , 1993 .
[50] Eduardo D. Sontag,et al. Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .
[51] V. Komornik. Exact Controllability and Stabilization: The Multiplier Method , 1995 .
[52] D. Russell. Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .
[53] Enrique Zuazua,et al. Boundary obeservability for the space semi-discretization for the 1-d wave equation , 1999 .
[54] A. Haraux,et al. Systèmes dynamiques dissipatifs et applications , 1991 .
[55] Axel Osses,et al. On the controllability of the Laplace equation observed on an interior curve , 1998 .
[56] Société de mathématiques appliquées et industrielles,et al. Introduction aux problèmes d'évolution semi-linéaires , 1990 .
[57] P. Gérard. Microlocal defect measures , 1991 .
[58] Par S. Alinhac. Non-unicite du probleme de Cauchy , 1983 .
[59] C. Zuily,et al. Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients , 1998 .
[60] Stéphane Jaffard,et al. ESTIMATES OF THE CONSTANTS IN GENERALIZED INGHAM'S INEQUALITY AND APPLICATIONS TO THE CONTROL OF THE WAVE EQUATION , 2001 .
[61] Laurent Schwartz,et al. Étude des sommes d'exponentielles , 1959 .