Surface and Volume Integral Equation Methods for Time-Harmonic Solutions of Maxwell's Equations (Invited Paper)

During the last two-three decades the importance of computer simulations based on numerical full-wave solutions of Maxwell's has continuously increased in electrical engineering. Software products based on integral equation methods have an unquestionable importance in the frequency domain electromagnetic analysis and design of open-region problems. This paper deals with the surface and volume integral equation methods for finding time-harmonic solutions of Maxwell's equations. First a review of classical integral equation representations and formulations is given. Thereafter we briefly overview the mathematical background of integral operators and equations and their discretization with the method of moments. The main focus is on advanced techniques that would enable accurate, stable, and scalable solutions on a wide range of material parameters, frequencies and applications. Finally, future perspectives of the integral equation methods for solving Maxwell's equations are discussed.

[1]  P. Ylä‐Oijala,et al.  Integral Equation Solution for the ${\rm D}^{\prime}{\rm B}^{\prime}$ Boundary Condition , 2010, IEEE Antennas and Wireless Propagation Letters.

[2]  Roger F. Harrington,et al.  An E-Field solution for a conducting surface small or comparable to the wavelength , 1984 .

[3]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[4]  D. Hoppe Impedance Boundary Conditions In Electromagnetics , 1995 .

[5]  Juan M. Rius,et al.  Nonconforming Discretization of the Electric-Field Integral Equation for Closed Perfectly Conducting Objects , 2014, IEEE Transactions on Antennas and Propagation.

[6]  Peter M. van den Berg,et al.  Computation of electromagnetic fields inside strongly inhomogeneous objects by the weak-conjugate-gradient fast-Fourier-transform method , 1994 .

[7]  New electric-magnetic field integral equation for the scattering analysis of perfectly conducting sharp-edged objects at very low or extremely low frequencies , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[8]  Allen W. Glisson,et al.  Electromagnetic scattering by arbitrarily shaped surfaces with impedance boundary conditions , 1992 .

[9]  John L. Volakis,et al.  Application of a conjugate gradient FFT method to scattering from thin planar material plates , 1988 .

[10]  P. Yla-Oijala,et al.  Well-conditioned Muller formulation for electromagnetic scattering by dielectric objects , 2005, IEEE Transactions on Antennas and Propagation.

[11]  Ralf Hiptmair,et al.  Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains , 2003, Numerische Mathematik.

[12]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[13]  P. Yla-Oijala,et al.  Multilevel Fast Multipole Algorithm With Global and Local Interpolators , 2014, IEEE Transactions on Antennas and Propagation.

[14]  J. Kataja,et al.  On shape differentiation of discretized electric field integral equation , 2013 .

[15]  John L. Volakis,et al.  Integral Equation Methods for Electromagnetics , 2012 .

[16]  Te-kao Wu,et al.  Scattering from arbitrarily‐shaped lossy dielectric bodies of revolution , 1977 .

[17]  Jiming Song,et al.  Error Analysis for the Numerical Evaluation of the Diagonal Forms of the Scalar Spherical Addition Theorem , 1999 .

[18]  Weng Cho Chew,et al.  An augmented electric field integral equation for high‐speed interconnect analysis , 2008 .

[19]  S. Jarvenpaa,et al.  Electromagnetic surface integral equation representations in terms of scalar functions , 2013, 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[20]  T. Weiland,et al.  A practical guide to 3-D simulation , 2008, IEEE Microwave Magazine.

[21]  L. Medgyesi-Mitschang,et al.  Integral equation formulations for imperfectly conducting scatterers , 1985 .

[22]  D. R. Wilton Chapter 1.5.5 – Computational Methods , 2002 .

[23]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[24]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[25]  Eric Darve,et al.  Fourier-Based Fast Multipole Method for the Helmholtz Equation , 2013, SIAM J. Sci. Comput..

[26]  Jukka Sarvas,et al.  Performing Interpolation and Anterpolation Entirely by Fast Fourier Transform in the 3-D Multilevel Fast Multipole Algorithm , 2003, SIAM J. Numer. Anal..

[27]  E. Michielssen,et al.  A CalderÓn Multiplicative Preconditioner for the Combined Field Integral Equation , 2009, IEEE Transactions on Antennas and Propagation.

[28]  Caicheng Lu,et al.  Analysis of Volume Integral Equation Formulations for Scattering by High-Contrast Penetrable Objects , 2012, IEEE Transactions on Antennas and Propagation.

[29]  J. H. Richmond,et al.  Scattering by an Arbitrary Array of Parallel Wires , 1965 .

[30]  Seppo Järvenpää,et al.  Analysis of surface integral equations in electromagnetic scattering and radiation problems , 2008 .

[31]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[32]  Siyuan Chen,et al.  Analysis of low frequency scattering from penetrable scatterers , 2001, IEEE Trans. Geosci. Remote. Sens..

[33]  K. K. Mei,et al.  Scattering by perfectly-conducting rectangular cylinders , 1963 .

[34]  Weng Cho Chew,et al.  Integral Equation Methods for Electromagnetic and Elastic Waves , 2007, Synthesis Lectures on Computational Electromagnetics.

[35]  L. J. Chu,et al.  Diffraction Theory of Electromagnetic Waves , 1939 .

[36]  P. Yla-Oijala,et al.  Improving Conditioning of Electromagnetic Surface Integral Equations Using Normalized Field Quantities , 2007, IEEE Transactions on Antennas and Propagation.

[37]  R. Kleinman,et al.  Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics , 1997 .

[38]  Eric F Darve The Fast Multipole Method , 2000 .

[39]  Weng Cho Chew,et al.  Applying divergence-free condition in solving the volume integral equation , 2006 .

[40]  Ignace Bogaert,et al.  On a Well-Conditioned Electric Field Integral Operator for Multiply Connected Geometries , 2013, IEEE Transactions on Antennas and Propagation.

[41]  Snorre H. Christiansen,et al.  A Preconditioner for the Electric Field Integral Equation Based on Calderon Formulas , 2002, SIAM J. Numer. Anal..

[42]  Jacob K. White,et al.  A precorrected-FFT method for electrostatic analysis of complicated 3-D structures , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[43]  Ari Sihvola,et al.  Discretization of Volume Integral Equation Formulations for Extremely Anisotropic Materials , 2012, IEEE Transactions on Antennas and Propagation.

[44]  D. Wilton,et al.  A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies , 1984 .

[45]  Jiming Song,et al.  Multilevel fast‐multipole algorithm for solving combined field integral equations of electromagnetic scattering , 1995 .

[46]  A. Sihvola,et al.  Computation of Scattering by DB Objects With Surface Integral Equation Method , 2011, IEEE Transactions on Antennas and Propagation.

[47]  Francesco P. Andriulli,et al.  Mixed discretization schemes for electromagnetic surface integral equations , 2012 .

[48]  M. Taskinen,et al.  Current and charge Integral equation formulation , 2006, IEEE Transactions on Antennas and Propagation.

[49]  Weng Cho Chew,et al.  A discrete BCG-FFT algorithm for solving 3D inhomogeneous scatterer problems , 1995 .

[50]  A. Sihvola,et al.  Electromagnetic Boundary Conditions Defined in Terms of Normal Field Components , 2009, IEEE Transactions on Antennas and Propagation.

[51]  R.J. Adams,et al.  Physical and analytical properties of a stabilized electric field integral equation , 2004, IEEE Transactions on Antennas and Propagation.

[52]  D. Wilton,et al.  Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains , 1984 .

[53]  Seppo Järvenpää,et al.  Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods , 2005 .

[54]  Yu Zhu,et al.  Multigrid Finite Element Methods for Electromagnetic Field Modeling , 2006 .

[55]  Gaps in present discretization schemes for domain integral equations , 2007, 2007 International Conference on Electromagnetics in Advanced Applications.

[56]  Jin Au Kong,et al.  Progress in Electromagnetics Research , 1989 .

[57]  Ignace Bogaert,et al.  Dual basis for the fully linear LL functions , 2012 .

[58]  L. Gurel,et al.  A Hierarchical Partitioning Strategy for an Efficient Parallelization of the Multilevel Fast Multipole Algorithm , 2009, IEEE Transactions on Antennas and Propagation.

[59]  Giuseppe Vecchi,et al.  Loop-star decomposition of basis functions in the discretization of the EFIE , 1999 .

[60]  B. Shanker,et al.  The Generalized Method of Moments for Electromagnetic Boundary Integral Equations , 2014, IEEE Transactions on Antennas and Propagation.

[61]  A. Taflove,et al.  Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects , 1986 .

[62]  Jin-Fa Lee,et al.  Preconditioned Electric Field Integral Equation Using Calderon Identities and Dual Loop/Star Basis Functions , 2009, IEEE Transactions on Antennas and Propagation.

[63]  Snorre H. Christiansen,et al.  A dual finite element complex on the barycentric refinement , 2005, Math. Comput..

[64]  Roger F. Harrington,et al.  Field computation by moment methods , 1968 .

[65]  Xiao-Min Pan,et al.  A Sophisticated Parallel MLFMA for Scattering by Extremely Large Targets [EM Programmer's Notebook] , 2008, IEEE Antennas and Propagation Magazine.

[66]  van Stef Stef Eijndhoven,et al.  Well-posedness of domain integral equations for a dielectric object in homogeneous background , 2008 .

[67]  Eric F Darve,et al.  A fast multipole method for Maxwell equations stable at all frequencies , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[68]  José María Tamayo Palau,et al.  Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects , 2011 .

[69]  T. Sarkar,et al.  Comments on "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies" , 1986 .

[70]  W. Chew,et al.  Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies , 2000 .

[71]  J. Bandler,et al.  Sensitivity analysis of network parameters with electromagnetic frequency-domain simulators , 2006, IEEE Transactions on Microwave Theory and Techniques.

[72]  Daniël De Zutter,et al.  Accurate and Conforming Mixed Discretization of the MFIE , 2011, IEEE Antennas and Wireless Propagation Letters.

[73]  Jiming Song,et al.  Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects , 1997 .

[74]  S. Rousselle,et al.  At the core of complex microwave system design , 2008, IEEE Microwave Magazine.

[75]  Roberto D. Graglia,et al.  On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle , 1993 .

[76]  J. Fostier,et al.  An Asynchronous Parallel MLFMA for Scattering at Multiple Dielectric Objects , 2008, IEEE Transactions on Antennas and Propagation.

[77]  W. Chew,et al.  Wave-Field Interaction With Complex Structures Using Equivalence Principle Algorithm , 2007, IEEE Transactions on Antennas and Propagation.

[78]  B. Kolundžija Electromagnetic modeling of composite metallic and dielectric structures , 1996, IEEE Antennas and Propagation Society International Symposium 1997. Digest.

[79]  Stephen D. Gedney,et al.  Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics , 2011, Synthesis Lectures on Computational Electromagnetics.

[80]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[81]  B. Dembart,et al.  Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering , 2002 .

[82]  Charles L. Epstein,et al.  Debye Sources and the Numerical Solution of the Time Harmonic Maxwell Equations II , 2008, 0808.3369.

[83]  L. N. Medgyesi-Mitschang,et al.  Generalized method of moments for three-dimensional penetrable scatterers , 1994 .

[84]  V. Lancellotti,et al.  An Eigencurrent Approach to the Analysis of Electrically Large 3-D Structures Using Linear Embedding via Green's Operators , 2009, IEEE Transactions on Antennas and Propagation.

[85]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[86]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[87]  Jukka Sarvas,et al.  TRANSLATION PROCEDURES FOR BROADBAND MLFMA , 2005 .

[88]  Jin-Fa Lee,et al.  Integral Equation Based Domain Decomposition Method for Solving Electromagnetic Wave Scattering From Non-Penetrable Objects , 2011, IEEE Transactions on Antennas and Propagation.

[89]  G. Vecchi,et al.  A multiresolution method of moments for triangular meshes , 2005, IEEE Transactions on Antennas and Propagation.

[90]  J. Richmond Scattering by a dielectric cylinder of arbitrary cross section shape , 1965 .

[91]  Alternative field representations and integral equations for modeling inhomogeneous dielectrics , 1992 .

[92]  K. Mei On the integral equations of thin wire antennas , 1965 .

[93]  P. Yla-Oijala,et al.  Electromagnetic Sensitivity Analysis and Shape Optimization Using Method of Moments and Automatic Differentiation , 2009, IEEE Transactions on Antennas and Propagation.

[94]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[95]  E. Michielssen,et al.  A Calderon Multiplicative Preconditioner for the PMCHWT Equation for Scattering by Chiral Objects , 2012, IEEE Transactions on Antennas and Propagation.

[96]  P. Yla-Oijala,et al.  A Global Interpolator With Low Sample Rate for Multilevel Fast Multipole Algorithm , 2013, IEEE Transactions on Antennas and Propagation.

[97]  Francesco P. Andriulli,et al.  A Calderón Multiplicative Preconditioner for the PMCHWT integral equation , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[98]  Weng Cho Chew,et al.  Stability of surface integral equation for left-handed materials , 2007 .

[99]  M.A. Khayat,et al.  Numerical evaluation of singular and near-singular potential Integrals , 2005, IEEE Transactions on Antennas and Propagation.

[100]  John W. Bandler,et al.  Feasible adjoint sensitivity technique for EM design optimization , 2002, IMS 2002.

[101]  Arthur D. Yaghjian,et al.  Augmented electric‐ and magnetic‐field integral equations , 1981 .

[102]  Ralf Hiptmair,et al.  Natural Boundary Element Methods for the Electric Field Integral Equation on Polyhedra , 2002, SIAM J. Numer. Anal..

[103]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[104]  Ismo V. Lindell,et al.  Methods for Electromagnetic Field Analysis , 1992 .

[105]  A. Glisson,et al.  Electromagnetic mixing formulas and applications , 2000, IEEE Antennas and Propagation Magazine.

[106]  R. Harrington Boundary integral formulations for homogeneous material bodies , 1989 .

[107]  John L. Volakis,et al.  Finite Element Method Electromagnetics , 1998 .

[108]  P. Yla-Oijala,et al.  Calculation of CFIE impedance matrix elements with RWG and n/spl times/RWG functions , 2003 .

[109]  M. Andreasen,et al.  Scattering from parallel metallic cylinders with arbitrary cross sections , 1964 .

[110]  L. Gurel,et al.  Rigorous Solutions of Electromagnetic Problems Involving Hundreds of Millions of Unknowns , 2011, IEEE Antennas and Propagation Magazine.

[111]  P. Yla-Oijala,et al.  Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles , 2006, IEEE Transactions on Antennas and Propagation.

[112]  P. Yla-Oijala,et al.  Application of combined field Integral equation for electromagnetic scattering by dielectric and composite objects , 2005, IEEE Transactions on Antennas and Propagation.

[113]  V. Gülzow An integral equation method for the time-harmonic maxwell equations with boundary conditions for the normal components , 1988 .

[114]  Jukka Sarvas,et al.  Surface Integral Equation Method for General Composite Metallic and Dielectric Structures with Junctions , 2005 .

[115]  Andrew J. Poggio,et al.  CHAPTER 4 – Integral Equation Solutions of Three-dimensional Scattering Problems , 1973 .

[116]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[117]  Oliver Heaviside,et al.  XV. On electromagnetic waves, especially in relation to the vorticity of the impressed forces; and the forced vibrations of electromagnetic systems , 1888 .

[118]  M. Costabel,et al.  The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body , 2012 .

[119]  P. Ylä‐Oijala,et al.  Solving IBC-CFIE With Dual Basis Functions , 2010, IEEE Transactions on Antennas and Propagation.

[120]  C. Schwab,et al.  Boundary element methods for Maxwell's equations on non-smooth domains , 2002, Numerische Mathematik.

[121]  Karl F. Warnick,et al.  Numerical analysis for electromagnetic integral equations , 2008 .

[122]  Johannes Markkanen,et al.  Broadband Multilevel Fast Multipole Algorithm for Electric-Magnetic Current Volume Integral Equation , 2013, IEEE Transactions on Antennas and Propagation.

[123]  Jianming Jin,et al.  Self-Dual Integral Equations for Electromagnetic Scattering From IBC Objects , 2013, IEEE Transactions on Antennas and Propagation.

[124]  Johannes Markkanen,et al.  Error-controllable and well-conditioned mom solutions in computational electromagnetics: ultimate surface integral-equation formulation [open problems in cem] , 2013, IEEE Antennas and Propagation Magazine.

[125]  A. Sihvola,et al.  Mixed-Impedance Boundary Conditions , 2011, IEEE Transactions on Antennas and Propagation.

[126]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[127]  R. Duraiswami,et al.  Fast Multipole Methods for the Helmholtz Equation in Three Dimensions , 2005 .

[128]  Jian-Ming Jin,et al.  Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies , 1998 .

[129]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[130]  Weng Cho Chew,et al.  Low-frequency fast inhomogeneous plane-wave algorithm (LF-FIPWA) , 2004 .

[131]  Giuseppe Vecchi,et al.  Solving the EFIE at Low Frequencies With a Conditioning That Grows Only Logarithmically With the Number of Unknowns , 2010, IEEE Transactions on Antennas and Propagation.

[132]  W. Chew,et al.  A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets , 2000 .

[133]  E. Michielssen,et al.  A Multiplicative Calderon Preconditioner for the Electric Field Integral Equation , 2008, IEEE Transactions on Antennas and Propagation.

[134]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[135]  A. Polimeridis,et al.  On the Direct Evaluation of Weakly Singular Integrals in Galerkin Mixed Potential Integral Equation Formulations , 2008, IEEE Transactions on Antennas and Propagation.