An adaptive generalized interpolation material point method for simulating elastoplastic materials

We present an adaptive Generalized Interpolation Material Point (GIMP) method for simulating elastoplastic materials. Our approach allows adaptive refining and coarsening of different regions of the material, leading to an efficient MPM solver that concentrates most of the computation resources in specific regions of interest. We propose a C1 continuous adaptive basis function that satisfies the partition of unity property and remains non-negative throughout the computational domain. We develop a practical strategy for particle-grid transfers that leverages the recently introduced SPGrid data structure for storing sparse multi-layered grids. We demonstrate the robustness and efficiency of our method on the simulation of various elastic and plastic materials. We also compare key kernel components to uniform grid MPM solvers to highlight performance benefits of our method.

[1]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[2]  Jin Ma,et al.  Structured mesh refinement in generalized interpolation material point (GIMP) method for simulation of dynamic problems , 2006 .

[3]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[4]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[5]  Greg Turk,et al.  A finite element method for animating large viscoplastic flow , 2007, SIGGRAPH 2007.

[6]  J. Bialek Nonlinear Continuum Mechanics for Finite Element Analysis , 1998 .

[7]  Ronald Fedkiw,et al.  Simulating water and smoke with an octree data structure , 2004, ACM Trans. Graph..

[8]  Ranga Komanduri,et al.  Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method , 2007 .

[9]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, SIGGRAPH 2007.

[10]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[11]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[12]  Steve Capell,et al.  A multiresolution framework for dynamic deformations , 2002, SCA '02.

[13]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[14]  John A. Nairn,et al.  Hierarchical, adaptive, material point method for dynamic energy release rate calculations , 2002 .

[15]  E. Guendelman,et al.  Efficient simulation of large bodies of water by coupling two and three dimensional techniques , 2006, SIGGRAPH 2006.

[16]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) Flexible Simulation of Deformable Models Using Discontinuous Galerkin Fem , 2022 .

[17]  Lars Vabbersgaard Andersen,et al.  Material-Point Method Analysis of Bending in Elastic Beams , 2007 .

[18]  Ranga Komanduri,et al.  Multiscale Simulations Using Generalized Interpolation Material Point (GIMP) Method And SAMRAI Parallel Processing , 2005 .

[19]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[20]  Yongning Zhu,et al.  Animating sand as a fluid , 2005, SIGGRAPH 2005.

[21]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[22]  Markus H. Gross,et al.  Two-scale particle simulation , 2011, ACM Trans. Graph..

[23]  J. Brackbill,et al.  Flip: A low-dissipation, particle-in-cell method for fluid flow , 1988 .

[24]  Yanping Lian,et al.  A mesh-grading material point method and its parallelization for problems with localized extreme deformation , 2015 .

[25]  Reiji Tsuruno,et al.  Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[26]  Matthias Harders,et al.  Robust interactive cutting based on an adaptive octree simulation mesh , 2011, The Visual Computer.

[27]  Jonathan Richard Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, ACM Trans. Graph..

[28]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[29]  Rüdiger Westermann,et al.  Narrow Band FLIP for Liquid Simulations , 2016, Comput. Graph. Forum.

[30]  Matthias Müller,et al.  Real-time Eulerian water simulation using a restricted tall cell grid , 2011, ACM Trans. Graph..

[31]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[32]  Markus H. Gross,et al.  Fast adaptive shape matching deformations , 2008, SCA '08.

[33]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[34]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[35]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[36]  M. Berzins,et al.  Analysis and reduction of quadrature errors in the material point method (MPM) , 2008 .

[37]  Mathieu Desbrun,et al.  Interactive multiresolution animation of deformable models , 1999, Computer Animation and Simulation.

[38]  Xiong Zhang,et al.  Keynote: Tied Interface Grid Material Point Method for Problems with Localized Extreme Deformation , 2014 .

[39]  Sarah Tariq,et al.  Interactive fluid-particle simulation using translating Eulerian grids , 2010, I3D '10.

[40]  Grégory Legrain,et al.  On the use of the extended finite element method with quadtree/octree meshes , 2011 .

[41]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[42]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[43]  C. M. Mast Modeling Landslide-Induced Flow Interactions with Structures using the Material Point Method , 2013 .

[44]  Eftychios Sifakis,et al.  Power diagrams and sparse paged grids for high resolution adaptive liquids , 2017, ACM Trans. Graph..

[45]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[46]  Christopher Batty,et al.  Tetrahedral Embedded Boundary Methods for Accurate and Flexible Adaptive Fluids , 2010, Comput. Graph. Forum.

[47]  Rüdiger Westermann,et al.  A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects , 2011, IEEE Transactions on Visualization and Computer Graphics.

[48]  Ken Museth,et al.  VDB: High-resolution sparse volumes with dynamic topology , 2013, TOGS.

[49]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[50]  Ronald Fedkiw,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Hybrid Simulation of Deformable Solids , 2022 .

[51]  Eitan Grinspun,et al.  CHARMS: a simple framework for adaptive simulation , 2002, ACM Trans. Graph..

[52]  Ken Museth,et al.  Hierarchical RLE level set: A compact and versatile deformable surface representation , 2006, TOGS.

[53]  Frédéric H. Pighin,et al.  Fluid simulation via disjoint translating grids , 2005, SIGGRAPH '05.

[54]  GaoMing,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017 .

[55]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, ACM Trans. Graph..

[56]  Ronald Fedkiw,et al.  Chimera grids for water simulation , 2013, SCA '13.

[57]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Adaptive Deformations with Fast Tight Bounds , 2022 .

[58]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[59]  J. Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, SIGGRAPH 2007.

[60]  Rahul Narain,et al.  Adaptive Physically Based Models in Computer Graphics , 2017, Comput. Graph. Forum.

[61]  Eftychios Sifakis,et al.  A scalable schur-complement fluids solver for heterogeneous compute platforms , 2016, ACM Trans. Graph..

[62]  Thomas-Peter Fries,et al.  Hanging nodes and XFEM , 2011 .

[63]  S. Bardenhagen,et al.  The Generalized Interpolation Material Point Method , 2004 .