Loss and dispersion analysis of microstructured fibers by finite-difference method.

The dispersion and loss in microstructured fibers are studied using a full-vectorial compact-2D finite-difference method in frequency-domain. This method solves a standard eigen-value problem from the Maxwell's equations directly and obtains complex propagation constants of the modes using anisotropic perfectly matched layers. A dielectric constant averaging technique using Ampere's law across the curved media interface is presented. Both the real and the imaginary parts of the complex propagation constant can be obtained with a high accuracy and fast convergence. Material loss, dispersion and spurious modes are also discussed.

[1]  Wolfgang J. R. Hoefer,et al.  The Finite-Difference-Time-Domain Method and its Application to Eigenvalue Problems , 1986 .

[2]  Frédéric Zolla,et al.  Numerical and Theoretical Study of Photonic Crystal Fibers , 2003 .

[3]  Jian-Ming Jin,et al.  Complex coordinate stretching as a generalized absorbing boundary condition , 1997 .

[4]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[5]  Weng Cho Chew,et al.  Unified analysis of perfectly matched layers using differential forms , 1999 .

[6]  P. Russell Photonic Crystal Fibers , 2003, Science.

[7]  A. Bjarklev,et al.  Photonic Crystal Fibers: A New Class of Optical Waveguides , 1999 .

[8]  A. Cangellaris,et al.  Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides , 1993, IEEE Microwave and Guided Wave Letters.

[9]  Tatsuo Itoh,et al.  FDTD analysis of dielectric resonators with curved surfaces , 1997 .

[10]  Dietrich Marcuse,et al.  Solution of the vector wave equation for general dielectric waveguides by the Galerkin method , 1992 .

[11]  Fritz Arndt,et al.  Finite-Difference Analysis of Rectangular Dielectric Waveguide Structures , 1986 .

[12]  M. Koshiba,et al.  Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems , 2000, Journal of Lightwave Technology.

[13]  Sacharia Albin,et al.  Analysis of circular fibers with an arbitrary index profile by the Galerkin method. , 2004, Optics letters.

[14]  Raj Mittra,et al.  An application of the perfectly matched layer (PML) concept to the finite element method frequency domain analysis of scattering problems , 1995 .

[15]  Luca Roselli,et al.  Rigorous analysis of 3D optical and optoelectronic devices by the Compact-2D-FDTD method , 1999 .

[16]  B. M. A. Rahman,et al.  Loss/gain characterization of optical waveguides , 1995 .

[17]  Dominique Pagnoux,et al.  Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method , 2000 .

[18]  H. Unger,et al.  Analysis of vectorial mode fields in optical waveguides by a new finite difference method , 1994 .

[19]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[20]  Zhaoming Zhu,et al.  Full-vectorial finite-difference analysis of microstructured optical fibers. , 2002, Optics express.

[21]  Robert Rogowski,et al.  Photonic band gap analysis using finite-difference frequency-domain method. , 2004, Optics express.

[22]  Kunimasa Saitoh,et al.  Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. , 2003, Optics express.

[23]  L. Shafai,et al.  Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD , 1992 .

[24]  Lou Shuqin,et al.  Supercell lattice method for photonic crystal fibers. , 2003, Optics express.

[25]  M. Koshiba,et al.  Finite element beam propagation method with perfectly matched layer boundary conditions , 1999 .

[26]  Kunimasa Saitoh,et al.  Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers , 2002 .

[27]  P. Andrés,et al.  Nearly zero ultraflattened dispersion in photonic crystal fibers. , 2000, Optics letters.

[28]  Eric L. Miller,et al.  Optimum PML ABC conductivity profile in FDFD , 1999 .

[29]  Robert Rogowski,et al.  Comparative analysis of Bragg fibers. , 2004, Optics express.

[30]  Luca Vincetti,et al.  PERFECTLY MATCHED ANISOTROPIC LAYERS FOR OPTICAL WAVEGUIDE ANALYSIS THROUGH THE FINITE-ELEMENT BEAM-PROPAGATION METHOD , 1999 .

[31]  R. Vahldieck,et al.  Full-wave analysis of guided wave structures using a novel 2-D FDTD , 1992, IEEE Microwave and Guided Wave Letters.

[32]  T. Brown,et al.  Analysis of the space filling modes of photonic crystal fibers. , 2001, Optics express.

[33]  W. Chew,et al.  Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates , 1997 .

[34]  W. Heinrich,et al.  Accuracy limitations of perfectly matched layers in 3D finite-difference frequency-domain method , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[35]  Kunimasa Saitoh,et al.  Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides , 2001 .

[36]  David J. Richardson,et al.  Holey optical fibers: an efficient modal model , 1999 .

[37]  Lou Shuqin,et al.  Full-vectorial analysis of complex refractive index photonic crystal fibers. , 2004, Optics express.

[38]  P. Andrés,et al.  Vector description of higher-order modes in photonic crystal fibers , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  T A Birks,et al.  Group-velocity dispersion in photonic crystal fibers. , 1998, Optics letters.

[40]  P Andrés,et al.  Full-vector analysis of a realistic photonic crystal fiber. , 1999, Optics letters.

[41]  A. Bjarklev,et al.  Analysis of air-guiding photonic bandgap fibers. , 2000, Optics letters.

[42]  R. L. Gallawa,et al.  Vector and quasi-vector solutions for optical waveguide modes using efficient Galerkin's method with Hermite-Gauss basis functions , 1995 .

[43]  H. Yang,et al.  Finite difference analysis of 2-D photonic crystals , 1996 .

[44]  P. McIsaac Symmetry-Induced Modal Characteristics of Uniform Waveguides --- II: Theory , 1974 .