HRMC_2.0: Hybrid Reverse Monte Carlo method with silicon, carbon and germanium potentials

The Hybrid Reverse Monte Carlo (HRMC) code models the atomic structure of materials via the use of a combination of constraints including experimental diffraction data and an empirical energy potential. In this version update, germanium potential parameters are introduced and constraints based on the coordination, average coordination and the total bond angle distribution are implemented. Other additional changes include a constraint on three member ring formation, a constraint on porosity and an extension to handle systems with up to three different elements.

[1]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  K. Gubbins,et al.  Molecular modeling and adsorption properties of porous carbons , 2006 .

[4]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[5]  A. P. Terzyk,et al.  Structural properties of amorphous diamond -like carbon: percolation, cluster, and pair correlation analysis , 2012 .

[6]  Orsolya Gereben,et al.  RMC_POT: A computer code for reverse monte carlo modeling the structure of disordered systems containing molecules of arbitrary complexity , 2012, J. Comput. Chem..

[7]  I. Snook,et al.  Modeling of structure and porosity in amorphous silicon systems using Monte Carlo methods. , 2007, The Journal of chemical physics.

[8]  I. Snook,et al.  Curved-surface atomic modeling of nanoporous carbon , 2007 .

[9]  N. Marks Generalizing the environment-dependent interaction potential for carbon , 2000 .

[10]  Gerard T. Barkema,et al.  Fitting the Stillinger–Weber potential to amorphous silicon , 2001 .

[11]  J. L. Robertson,et al.  High Resolution Radial Distribution Function of Pure Amorphous Silicon , 1999 .

[12]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[14]  L. Tjeng,et al.  Theoretical description of the Fano effect in the angle-integrated valence-band photoemission of paramagnetic solids , 2001 .

[15]  I. Snook,et al.  Structural analysis of carbonaceous solids using an adapted reverse Monte Carlo algorithm , 2003 .

[16]  Irene Yarovsky,et al.  Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo , 2002 .

[17]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[18]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[19]  S. Bhatia,et al.  New method for atomistic modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  K. Gubbins,et al.  Structure of saccharose-based carbon and transport of confined fluids: hybrid reverse Monte Carlo reconstruction and simulation studies , 2006 .

[21]  K. Gubbins,et al.  Detailed structural models for activated carbons from molecular simulation , 2009 .