Semiempirical van der Waals correction to the density functional description of solids and molecular structures

The influence of a simple semiempirical van der Waals (vdW) correction on the description of dispersive, covalent, and ionic bonds within density functional theory is studied. The correction is based on the asymptotic London form of dispersive forces and a damping function for each pair of atoms. It thus depends solely on the properties of the two atoms irrespective of their environment and is numerically very efficient. The correction is tested in comparison with results obtained using the generalized gradient approximation or the local density approximation for exchange and correlation. The results are also compared with reference values from experiment or quantum chemistry methods. In order to probe the universality and transferability of the semiempirical vdW correction, a range of solids and molecular systems with covalent, heteropolar, and vdW bonds are studied.

[1]  Serguei Patchkovskii,et al.  An Efficient a Posteriori Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding. , 2005, Journal of chemical theory and computation.

[2]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[3]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[4]  John C. Slater,et al.  The Van Der Waals Forces in Gases , 1931 .

[5]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[6]  Hendrik Ulbricht,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2004 .

[7]  P. Herman,et al.  Vacuum ultraviolet laser spectroscopy. V. Rovibronic spectra of Ar2 and constants of the ground and excited states , 1988 .

[8]  Masayuki Hasegawa,et al.  Semiempirical approach to the energetics of interlayer binding in graphite , 2004 .

[9]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[10]  F. Bechstedt,et al.  Attracted by long-range electron correlation: adenine on graphite. , 2005, Physical review letters.

[11]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[12]  Georg Kresse,et al.  Extreme softening of Vanderbilt pseudopotentials: General rules and case studies of first-row and d-electron elements , 2000 .

[13]  S. Tsuzuki,et al.  Origin of attraction and directionality of the pi/pi interaction: model chemistry calculations of benzene dimer interaction. , 2002, Journal of the American Chemical Society.

[14]  T. Walsh,et al.  Exact exchange and Wilson-Levy correlation: a pragmatic device for studying complex weakly-bonded systems. , 2005, Physical chemistry chemical physics : PCCP.

[15]  Pavel Hobza,et al.  Potential Energy Surface for the Benzene Dimer. Results of ab Initio CCSD(T) Calculations Show Two Nearly Isoenergetic Structures: T-Shaped and Parallel-Displaced , 1996 .

[16]  H. Rydberg,et al.  UNIFIED TREATMENT OF ASYMPTOTIC VAN DER WAALS FORCES , 1998, cond-mat/9805352.

[17]  Steven G. Louie,et al.  Nonlinear ionic pseudopotentials in spin-density-functional calculations , 1982 .

[18]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[19]  P. Ngoepe,et al.  Effects of Local and Gradient-Corrected Density Approximations on the Prediction of the Intralayer Lattice Distance c, in Graphite and LiC6 , 1999 .

[20]  R. Simmons,et al.  Measurements of X-Ray Lattice Constant, Thermal Expansivity, and Isothermal Compressibility of Argon Crystals , 1966 .

[21]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[22]  Kimihiko Hirao,et al.  A density-functional study on pi-aromatic interaction: benzene dimer and naphthalene dimer. , 2005, The Journal of chemical physics.

[23]  Young Kee Kang,et al.  Additivity of atomic static polarizabilities and dispersion coefficients , 1982 .

[24]  Ashcroft,et al.  Fluctuation attraction in condensed matter: A nonlocal functional approach. , 1991, Physical review. B, Condensed matter.

[25]  Robert J. Gdanitz,et al.  An accurate interaction potential for neon dimer (Ne2) , 2001 .

[26]  Shant Shahbazian,et al.  An improved ab initio potential energy surface for N2–N2 , 2005 .

[27]  Michiel Sprik,et al.  A density‐functional study of the intermolecular interactions of benzene , 1996 .

[28]  P. Hyldgaard,et al.  Density-functional calculation of van der Waals forces for free-electron-like surfaces , 2001 .

[29]  Jürgen Hafner,et al.  Ab initio molecular-dynamics studies of the graphitization of flat and stepped diamond (111) surfaces , 1998 .

[30]  P. Hyldgaard,et al.  Hard numbers on soft matter , 2003 .

[31]  Manfred Lein,et al.  Toward the description of van der Waals interactions within density functional theory , 1999, J. Comput. Chem..

[32]  Jun Wang,et al.  SUCCESSFUL TEST OF A SEAMLESS VAN DER WAALS DENSITY FUNCTIONAL , 1999 .

[33]  Srivastava,et al.  III-V(110) surface dynamics from an ab initio frozen-phonon approach. , 1995, Physical review. B, Condensed matter.

[34]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[35]  D. Langreth,et al.  Beyond the local-density approximation in calculations of ground-state electronic properties , 1983 .

[36]  Elangannan Arunan,et al.  The rotational spectrum, structure and dynamics of a benzene dimer , 1993 .

[37]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[38]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[39]  Olivier Couronne,et al.  An ab initio and DFT study of (N2)2 dimers , 1999 .

[40]  D. Losee,et al.  Measurements of Lattice Constant, Thermal Expansion, and Isothermal Compressibility of Neon Single Crystals , 1967 .

[41]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .

[42]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[43]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[44]  D. R. Hamann,et al.  H 2 O hydrogen bonding in density-functional theory , 1997 .

[45]  Bouke P. van Eijck,et al.  Transferable ab Initio Intermolecular Potentials. 1. Derivation from Methanol Dimer and Trimer Calculations , 1999 .

[46]  C. David Sherrill,et al.  Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations , 2004 .

[47]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[48]  Marc-Antoine Perrin,et al.  Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction. , 2005, The journal of physical chemistry. B.

[49]  Giacinto Scoles,et al.  Intermolecular forces in simple systems , 1977 .

[50]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[51]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[52]  Beate Paulus,et al.  Ab initio calculation of ground-state properties of rare-gas crystals. , 1999 .

[53]  Andrew C. Victor,et al.  Heat Capacity of Diamond at High Temperatures , 1962 .

[54]  G. Ewing,et al.  The infrared spectrum of the (N2)2 van der waals molecule , 1973 .

[55]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[56]  A. Wüest,et al.  Determination of the interaction potential of the ground electronic state of Ne2 by high-resolution vacuum ultraviolet laser spectroscopy , 2003 .

[57]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[58]  L. Girifalco,et al.  Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System , 1956 .

[59]  T. Bolland,et al.  Theoretical elastic behavior for hexagonal boron nitride , 1976 .

[60]  Fernando Pirani,et al.  The N2–N2 system: An experimental potential energy surface and calculated rotovibrational levels of the molecular nitrogen dimer , 2002 .

[61]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[62]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[63]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[64]  Pavel Hobza,et al.  State-of-the-art correlated ab initio potential energy curves for heavy rare gas dimers: Ar2, Kr2, and Xe2 , 2003 .

[65]  R. S. Pease An X‐ray study of boron nitride , 1952 .

[66]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[67]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[68]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[69]  Bradley P. Dinte,et al.  Soft cohesive forces , 2005 .

[70]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[71]  Georg Kresse,et al.  Ab initio calculation of the lattice dynamics and phase diagram of boron nitride , 1999 .

[72]  Lothar Meyer,et al.  Lattice Constants of Graphite at Low Temperatures , 1955 .

[73]  Friedhelm Bechstedt,et al.  Ground‐ and excited‐state properties of DNA base molecules from plane‐wave calculations using ultrasoft pseudopotentials , 2004, J. Comput. Chem..

[74]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .