Blended isogeometric shells
暂无分享,去创建一个
Thomas J. R. Hughes | Yuri Bazilevs | David J. Benson | Ming-Chen Hsu | S. Hartmann | T. Hughes | Ming-Chen Hsu | Y. Bazilevs | D. Benson | S. Hartmann | M. Hsu
[1] T. Hughes,et al. Nonlinear finite element shell formulation accounting for large membrane strains , 1983 .
[2] David J. Benson,et al. A simple rigid body algorithm for structural dynamics programs , 1986 .
[3] T. Hughes,et al. ISOGEOMETRIC COLLOCATION METHODS , 2010 .
[4] E. Ramm,et al. Shear deformable shell elements for large strains and rotations , 1997 .
[5] M. Ortiz,et al. Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .
[6] Thomas J. R. Hughes,et al. Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .
[7] Jerry I. Lin,et al. Explicit algorithms for the nonlinear dynamics of shells , 1984 .
[8] D. F. Rogers,et al. An Introduction to NURBS: With Historical Perspective , 2011 .
[9] Long Chen. FINITE ELEMENT METHOD , 2013 .
[10] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[11] Yuri Bazilevs,et al. 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .
[12] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[13] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[14] Ahmed A. Shabana,et al. Dynamics of Multibody Systems , 2020 .
[15] T. Hughes,et al. Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .
[16] Hongwei Lin,et al. Watertight trimmed NURBS , 2008, ACM Trans. Graph..
[17] David J. Benson,et al. A single surface contact algorithm for the post-buckling analysis of shell structures , 1990 .
[18] Thomas J. R. Hughes,et al. A large deformation, rotation-free, isogeometric shell , 2011 .
[19] Fehmi Cirak,et al. Shear‐flexible subdivision shells , 2012 .
[20] G. S. Sekhon,et al. Large Deformation -I , 2003 .
[21] T. Belytschko,et al. X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .
[22] Yuri Bazilevs,et al. The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .
[23] David W. Murray,et al. Nonlinear Finite Element Analysis of Steel Frames , 1983 .
[24] Roland Wüchner,et al. Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .
[25] Yuri Bazilevs,et al. A computational procedure for prebending of wind turbine blades , 2012 .
[26] T. Belytschko,et al. A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .
[27] J. Yoon,et al. One point quadrature shell element with through-thickness stretch , 2005 .
[28] Thomas J. R. Hughes,et al. Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .
[29] J. Z. Zhu,et al. The finite element method , 1977 .
[30] Arend L. Schwab,et al. Dynamics of Multibody Systems , 2007 .
[31] D. Schillinger,et al. An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .
[32] Eugenio Oñate,et al. Advances in the formulation of the rotation-free basic shell triangle , 2005 .
[33] Fehmi Cirak,et al. Subdivision shells with exact boundary control and non‐manifold geometry , 2011 .
[34] Scott E. Schoenfeld,et al. Quickly convergent integration methods for plane stress plasticity , 1993 .
[35] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .