Submodular maximization by simulated annealing

We consider the problem of maximizing a nonnegative (possibly non-monotone) submodular set function with or without constraints. Feige et al. [9] showed a 2/5-approximation for the unconstrained problem and also proved that no approximation better than 1/2 is possible in the value oracle model. Constant-factor approximation has been also known for submodular maximization subject to a matroid independence constraint (a factor of 0.309 [33]) and for submodular maximization subject to a matroid base constraint, provided that the fractional base packing number ν is bounded away from 1 (a 1/4-approximation assuming that ν ≥ 2 [33]). In this paper, we propose a new algorithm for submodular maximization which is based on the idea of simulated annealing. We prove that this algorithm achieves improved approximation for two problems: a 0.41-approximation for unconstrained submodular maximization, and a 0.325-approximation for submodular maximization subject to a matroid independence constraint. On the hardness side, we show that in the value oracle model it is impossible to achieve a 0.478-approximation for submodular maximization subject to a matroid independence constraint, or a 0.394-approximation subject to a matroid base constraint in matroids with two disjoint bases. Even for the special case of cardinality constraint, we prove it is impossible to achieve a 0.491-approximation. (Previously it was conceivable that a 1/2-approximation exists for these problems.) It is still an open question whether a 1/2-approximation is possible for unconstrained submodular maximization.

[1]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[2]  Gagan Goel,et al.  Approximability of Combinatorial Problems with Multi-agent Submodular Cost Functions , 2009, FOCS.

[3]  Gagan Goel,et al.  Approximability of Combinatorial Problems with Multi-agent Submodular Cost Functions , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[4]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[5]  Satoru Iwata,et al.  A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions , 2000, STOC '00.

[6]  Santosh S. Vempala,et al.  Simulated annealing in convex bodies and an O*(n4) volume algorithm , 2006, J. Comput. Syst. Sci..

[7]  Santosh S. Vempala,et al.  Simulated Annealing for Convex Optimization , 2004 .

[8]  Vahab S. Mirrokni,et al.  Non-monotone submodular maximization under matroid and knapsack constraints , 2009, STOC '09.

[9]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[10]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[11]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[12]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[13]  V. Vazirani,et al.  Accelerating simulated annealing for the permanent and combinatorial counting problems , 2006, SODA 2006.

[14]  Per Austrin Improved Inapproximability for Submodular Maximization , 2010, APPROX-RANDOM.

[15]  Aaron Roth,et al.  Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms , 2010, WINE.

[16]  Lisa Fleischer,et al.  Submodular Approximation: Sampling-based Algorithms and Lower Bounds , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[17]  Boris Goldengorin,et al.  The maximization of submodular functions: old and new proofs for the correctness of the dichotomy algorithm , 1999 .

[18]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[19]  Jan Vondrák,et al.  Symmetry and Approximability of Submodular Maximization Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[20]  Hadas Shachnai,et al.  Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.

[21]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[22]  Jan Vondrák,et al.  Submodular Maximization over Multiple Matroids via Generalized Exchange Properties , 2009, Math. Oper. Res..

[23]  F. Dunstan MATROIDS AND SUBMODULAR FUNCTIONS , 1976 .

[24]  Vahab Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2007, FOCS 2007.

[25]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[26]  Uriel Feige,et al.  Approximating the value of two power proof systems, with applications to MAX 2SAT and MAX DICUT , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[27]  G. Nemhauser,et al.  Maximizing a submodular function by integer programming: Polyhedral results for the quadratic case☆ , 1996 .

[28]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[29]  S. Schwartz,et al.  An accelerated sequential algorithm for producing D -optimal designs , 1989 .

[30]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[31]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[32]  Peter Rossmanith,et al.  Simulated Annealing , 2008, Taschenbuch der Algorithmen.

[33]  G. A. Tijssen,et al.  The Data-Correcting Algorithm for the Minimization of Supermodular Functions , 1999 .

[34]  Satoru Iwata,et al.  Submodular Function Minimization under Covering Constraints , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Eric Vigoda,et al.  Adaptive Simulated Annealing: A Near-optimal Connection between Sampling and Counting , 2007, FOCS.

[36]  Eric Vigoda,et al.  Adaptive Simulated Annealing: A Near-optimal Connection between Sampling and Counting , 2006, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[37]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[38]  Vahab S. Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[39]  Santosh S. Vempala,et al.  Simulated annealing in convex bodies and an O*(n/sup 4/) volume algorithm , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[40]  Vahab S. Mirrokni,et al.  Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints , 2009, SIAM J. Discret. Math..