Analysis of Magnetizing Process of a New Anisotropic Bonded NdFeB Permanent Magnet Using FEM Combined With Jiles-Atherton Hysteresis Model

This paper proposes an algorithm to analyze the magnetizing process of a new anisotropic bonded NdFeB permanent magnet (PM) which is magnetized by a capacitor discharge impulse magnetizing fixture. In the algorithm, the magnetic field analysis and the prediction of the residual magnetic flux density are achieved by using the transient finite element method (FEM) incorporating the scalar Jiles-Atherton (J-A) hysteresis model. The validity of the suggested method is demonstrated by applying to a 4-pole ring-type anisotropic bonded NdFeB PM and comparing the numerical results with the experiment ones.

[1]  C. Koh,et al.  Application of Polar Anisotropic NdFeB Ring-Type Permanent Magnet to Brushless DC Motor , 2007, IEEE Transactions on Magnetics.

[2]  Andrew D. Brown,et al.  Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm , 2001 .

[3]  Chang Seop Koh,et al.  A New Anisotropic Bonded NdFeB Permanent Magnet and Its Application to a Small DC Motor , 2010, IEEE Transactions on Magnetics.

[4]  David J. Kinsey,et al.  Electromagnetic design optimization of a powder aligning fixture for a compression-molded anisotropic NdFeB ring magnet , 2004, IEEE Transactions on Magnetics.

[5]  Hajime Igarashi,et al.  On the parameter identification and application of the Jiles-Atherton hysteresis model for numerical modelling of measured characteristics , 1999 .

[6]  Tadashi Yamaguchi,et al.  Analysis of magnetizing process using discharge current of capacitor by 3-D finite-element method , 2002 .

[7]  M.-A. Raulet,et al.  Identification of Jiles–Atherton Model Parameters Using Particle Swarm Optimization , 2008, IEEE Transactions on Magnetics.

[9]  D. Jiles,et al.  Modeling of permanent magnets: Interpretation of parameters obtained from the Jiles–Atherton hysteresis model , 1996 .

[10]  N. Takahashi,et al.  Numerical analysis of transient magnetic field in a capacitor-discharge impulse magnetizer , 1986 .

[11]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[12]  Sun-Ki Hong,et al.  Finite element analysis of magnetizer using Preisach model , 1999 .

[13]  T.H. Pham Mathematical modeling of bonded isotropic magnet magnetization for the finite element design analysis of brushless DC motors , 2004, IEEE Transactions on Magnetics.

[14]  Y. Honkura,et al.  Development of Nd-Fe-B anisotropic bonded magnet with 27 MGOe , 2003 .