Absorption in Invariant Domains for Semigroups of Quantum Channels

We introduce a notion of absorption operators in the context of quantum Markov processes. The absorption problem in invariant domains (enclosures) is treated for a quantum Markov evolution on a separable Hilbert space, both in discrete and continuous times: We define a well-behaving set of positive operators which can correspond to classical absorption probabilities, and we study their basic properties, in general, and with respect to accessibility structure of channels, transience and recurrence. In particular, we can prove that no accessibility is allowed between the null and positive recurrent subspaces. In the case, when the positive recurrent subspace is attractive, ergodic theory will allow us to get additional results, in particular about the description of fixed points.

[1]  Victor V. Albert Asymptotics of quantum channels: conserved quantities, an adiabatic limit, and matrix product states , 2018, Quantum.

[2]  M. Štefaňák,et al.  Percolation assisted excitation transport in discrete-time quantum walks , 2016, 1602.04678.

[3]  F. Fagnola,et al.  Subharmonic projections for a quantum Markov semigroup , 2002 .

[4]  Ergodic projection for quantum dynamical semigroups , 1995 .

[5]  Francesco Petruccione,et al.  Efficiency of open quantum walk implementation of dissipative quantum computing algorithms , 2012, Quantum Inf. Process..

[6]  Maurizio Verri,et al.  Long-time asymptotic properties of dynamical semigroups onW*-algebras , 1982 .

[7]  Man-Duen Choi A schwarz inequality for positive linear maps on $C^{\ast}$-algebras , 1974 .

[8]  Veronica Umanità,et al.  Classification and decomposition of Quantum Markov Semigroups , 2006 .

[9]  B. Baumgartner,et al.  The structures of state space concerning Quantum Dynamical Semigroups , 2011, 1101.3914.

[10]  Raffaella Carbone,et al.  Open Quantum Random Walks: Reducibility, Period, Ergodic Properties , 2014, 1405.2214.

[11]  F. Fagnola,et al.  Transience and recurrence of quantum Markov semigroups , 2003 .

[12]  ON THE PROJECTION OF NORM ONE IN W*-ALGEBRAS, III , 1958 .

[13]  A. Frigerio Quantum dynamical semigroups and approach to equilibrium , 1977 .

[14]  U. Groh,et al.  Decomposition of operator semigroups on W*-algebras , 2011, 1106.0287.

[15]  D. Petz,et al.  Sufficiency in Quantum Statistical Inference , 2004, math-ph/0412093.

[16]  Raffaella Carbone,et al.  Irreducible decompositions and stationary states of quantum channels , 2015, 1507.08404.

[17]  David E. Evans Irreducible quantum dynamical semigroups , 1977 .

[18]  A. Jenčová,et al.  On Period, Cycles and Fixed Points of a Quantum Channel , 2019, Annales Henri Poincaré.

[19]  Francesco Ticozzi,et al.  Decompositions of Hilbert spaces, stability analysis and convergence probabilities for discrete-time quantum dynamical semigroups , 2014, 1407.2566.

[20]  Franco Fagnola,et al.  TWO-PHOTON ABSORPTION AND EMISSION PROCESS , 2005 .

[21]  A. Frigerio,et al.  Stationary states of quantum dynamical semigroups , 1978 .

[22]  D. Farenick Irreducible positive linear maps on operator algebras , 1996 .

[23]  Riccardo Lucchese,et al.  Hamiltonian Control of Quantum Dynamical Semigroups: Stabilization and Convergence Speed , 2012, IEEE Transactions on Automatic Control.

[24]  R. Carbone,et al.  Homogeneous Open Quantum Random Walks on a Lattice , 2014, 1408.1113.

[25]  R. Høegh-Krohn,et al.  Spectral Properties of Positive Maps on C*‐Algebras , 1978 .

[26]  V. Umanità,et al.  The role of the atomic decoherence-free subalgebra in the study of quantum Markov semigroups , 2019, Journal of Mathematical Physics.

[27]  A pathwise ergodic theorem for quantum trajectories , 2004, quant-ph/0406213.

[28]  Knight,et al.  Two-photon absorption and nonclassical states of light. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[29]  F. Petruccione,et al.  Open Quantum Random Walks , 2012, 1402.3253.

[30]  U. Groh The peripheral point spectrum of schwarz operators onC*-algebras , 1981 .

[31]  Alvaro Arias,et al.  Fixed points of quantum operations , 2002 .