Unconditional Quantile Treatment Effects Under Endogeneity

This article develops estimators for unconditional quantile treatment effects when the treatment selection is endogenous. We use an instrumental variable (IV) to solve for the endogeneity of the binary treatment variable. Identification is based on a monotonicity assumption in the treatment choice equation and is achieved without any functional form restriction. We propose a weighting estimator that is extremely simple to implement. This estimator is root n consistent, asymptotically normally distributed, and its variance attains the semiparametric efficiency bound. We also show that including covariates in the estimation is not only necessary for consistency when the IV is itself confounded but also for efficiency when the instrument is valid unconditionally. An application of the suggested methods to the effects of fertility on the family income distribution illustrates their usefulness. Supplementary materials for this article are available online.

[1]  Victor Chernozhukov,et al.  Instrumental variable estimation of nonseparable models , 2007 .

[2]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[3]  J. Pfanzagl,et al.  CONTRIBUTIONS TO A GENERAL ASYMPTOTIC STATISTICAL THEORY , 1982 .

[4]  C. Stein Efficient Nonparametric Testing and Estimation , 1956 .

[5]  J. Angrist,et al.  Identification and Estimation of Local Average Treatment Effects , 1994 .

[6]  Roger Koenker,et al.  Inference on the Quantile Regression Process , 2000 .

[7]  Christian Hansen,et al.  Instrumental quantile regression inference for structural and treatment effect models , 2006 .

[8]  M. Frölich A Note on the Role of the Propensity Score for Estimating Average Treatment Effects , 2004 .

[9]  Dan A. Black,et al.  Estimating the Returns to College Quality with Multiple Proxies for Quality , 2006, Journal of Labor Economics.

[10]  M. Frölich A Note on Parametric and Nonparametric Regression in the Presence of Endogenous Control Variables , 2006 .

[11]  J. Angrist,et al.  Children and their parents' labor supply , 1996 .

[12]  Joel L. Horowitz,et al.  Nonparametric Instrumental Variables Estimation of a Quantile Regression Model , 2006 .

[13]  D. Black,et al.  How robust is the evidence on the effects of college quality? Evidence from matching , 2004 .

[14]  Gary Jeng,et al.  Trends in multiple births conceived using assisted reproductive technology, United States, 1997-2000. , 2003, Pediatrics.

[15]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[16]  Q. Lib,et al.  Nonparametric estimation of regression functions with both categorical and continuous data , 2004 .

[17]  S. Lundberg Men and islands: Dealing with the family in empirical labor economics , 2005 .

[18]  Roger Koenker,et al.  Inference for Quantile Regression , 2005 .

[19]  Victor Chernozhukov,et al.  Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .

[20]  M R Rosenzweig,et al.  Testing the quantity-quality fertility model: the use of twins as a natural experiment. , 1980, Econometrica : journal of the Econometric Society.

[21]  P. Chaudhuri Global nonparametric estimation of conditional quantile functions and their derivatives , 1991 .

[22]  J. Angrist,et al.  Children and Their Parents&Apos; Labor Supply: Evidence from Exogenous Variation in Family Size , 1996 .

[23]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[24]  N. Fortin,et al.  Unconditional Quantile Regressions , 2007 .

[25]  M. Frölich Propensity Score Matching without Conditional Independence Assumption - With an Application to the Gender Wage Gap in the United Kingdom , 2007 .

[26]  A. Chesher Identification in Nonseparable Models , 2003 .

[27]  J. Mata,et al.  Counterfactual decomposition of changes in wage distributions using quantile regression , 2005 .

[28]  Alberto Abadie Semiparametric instrumental variable estimation of treatment response models , 2003 .

[29]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[30]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[31]  Elias Masry,et al.  MULTIVARIATE LOCAL POLYNOMIAL REGRESSION FOR TIME SERIES:UNIFORM STRONG CONSISTENCY AND RATES , 1996 .

[32]  Enno Mammen,et al.  Identification of marginal effects in nonseparable models without monotonicity , 2007 .

[33]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .

[34]  Alberto Abadie Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models , 2002 .

[35]  C. Gutenbrunner,et al.  Regression Rank Scores and Regression Quantiles , 1992 .

[36]  J. Hahn On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects , 1998 .

[37]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[38]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[39]  D. Pollard,et al.  Asymptotics for minimisers of convex processes , 2011, 1107.3806.

[40]  Markus Frölich,et al.  Nonparametric IV Estimation of Local Average Treatment Effects with Covariates , 2002, SSRN Electronic Journal.

[41]  G. Imbens,et al.  Identification and Estimation of Triangular Simultaneous Equations Models without Additivity , 2002 .

[42]  B. Zhu,et al.  Effect of Interpregnancy Interval on Infant Low Birth Weight: A Retrospective Cohort Study Using the Michigan Maternally Linked Birth Database , 2003, Maternal and Child Health Journal.

[43]  W. Newey,et al.  The asymptotic variance of semiparametric estimators , 1994 .

[44]  R. Koenker,et al.  Regression Quantiles , 2007 .

[45]  O. Linton,et al.  Local nonlinear least squares: Using parametric information in nonparametric regression , 2000 .

[46]  A. Smithb,et al.  How robust is the evidence on the e ects of college quality ? Evidence from matching , 2004 .

[47]  Andrew Chesher,et al.  Nonparametric Identification under Discrete Variation , 2003 .

[48]  Thomas M. Stoker,et al.  Semiparametric Estimation of Index Coefficients , 1989 .

[49]  B. Levit,et al.  On a Non-Parametric Analogue of the Information Matrix , 1977 .

[50]  Costas Meghir,et al.  The changing distribution of male wages in the UK , 1994 .

[51]  J. Angrist,et al.  Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings , 1999 .

[52]  S. Lundberg,et al.  The Effects of Sons and Daughters on Men's Labor Supply and Wages , 1999, Review of Economics and Statistics.

[53]  Moshe Buchinsky CHANGES IN THE U.S. WAGE STRUCTURE 1963-1987: APPLICATION OF QUANTILE REGRESSION , 1994 .

[54]  Sergio Firpo Efficient Semiparametric Estimation of Quantile Treatment Effects , 2004 .

[55]  W. J. Hall,et al.  Information and Asymptotic Efficiency in Parametric-Nonparametric Models , 1983 .

[56]  V. Chernozhukov,et al.  Instrumental variable quantile regression: A robust inference approach , 2008 .

[57]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[58]  David Ruppert,et al.  Local Estimating Equations , 1998 .

[59]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2000 .

[60]  V. Chernozhukov,et al.  Inference on Counterfactual Distributions , 2009, 0904.0951.

[61]  David Card,et al.  Using Geographic Variation in College Proximity to Estimate the Return to Schooling , 1993 .

[62]  Local linear estimating equations: uniform consistency and rate of convergence , 2005 .

[63]  Anton Flossmann Empirical Bias Bandwidth Choice for Local Polynomial Matching Estimators , 2008 .

[64]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2002 .

[65]  Andrew Chesher,et al.  Instrumental Variable Models for Discrete Outcomes , 2008 .

[66]  M. Frölich Parametric and Nonparametric Regression in the Presence of Endogenous Control Variables , 2008 .

[67]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[68]  Rodney C. Wolff,et al.  Methods for estimating a conditional distribution function , 1999 .

[69]  R. Koenker Quantile Regression: Name Index , 2005 .

[70]  Kjell A. Doksum,et al.  Empirical Probability Plots and Statistical Inference for Nonlinear Models in the Two-Sample Case , 1974 .

[71]  J. Angrist,et al.  Identification and Estimation of Local Average Treatment Effects , 1995 .

[72]  D. Ruppert Empirical-Bias Bandwidths for Local Polynomial Nonparametric Regression and Density Estimation , 1997 .

[73]  Blaise Melly,et al.  Estimation of counterfactual distributions using quantile regression , 2006 .