Maximum Likelihood Estimation of a Structured Covariance Matrix With a Condition Number Constraint

In this paper, we deal with the problem of estimating the disturbance covariance matrix for radar signal processing applications, when a limited number of training data is present. We determine the maximum likelihood (ML) estimator of the covariance matrix starting from a set of secondary data, assuming a special covariance structure (i.e., the sum of a positive semi-definite matrix plus a term proportional to the identity), and a condition number upper-bound constraint. We show that the formulated constrained optimization problem falls within the class of MAXDET problems and develop an efficient procedure for its solution in closed form. Remarkably, the computational complexity of the algorithm is of the same order as the eigenvalue decomposition of the sample covariance matrix. At the analysis stage, we assess the performance of the proposed algorithm in terms of achievable signal-to-interference-plus-noise ratio (SINR) both for a spatial and a Doppler processing. The results show that interesting SINR improvements, with respect to some existing covariance matrix estimation techniques, can be achieved.

[1]  A. Farina,et al.  Knowledge-aided covariance matrix estimation: A MAXDET approach , 2008 .

[2]  J.R. Guerci,et al.  Knowledge-aided adaptive radar at DARPA: an overview , 2006, IEEE Signal Processing Magazine.

[3]  Karl Gerlach,et al.  Airborne/spacebased radar STAP using a structured covariance matrix , 2003 .

[4]  Ami Wiesel,et al.  Unified Framework to Regularized Covariance Estimation in Scaled Gaussian Models , 2012, IEEE Transactions on Signal Processing.

[5]  Hugh Griffiths,et al.  Performance of adaptive optimal Doppler processors in heterogeneous clutter , 1993, The Record of the 1993 IEEE National Radar Conference.

[6]  A. Farina,et al.  Knowledge-aided covariance matrix estimation: A MAXDET approach , 2008, 2008 IEEE Radar Conference.

[7]  Michael C. Wicks,et al.  Knowledge-Based Generalized Likelihood Ratio Test (KB-GLRT): Exploiting Knowledge of the Clutter Ridge in Airborne Radar , 2004 .

[8]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[9]  A. Farina,et al.  Adaptive Radar Detection: A Bayesian Approach , 2006, 2006 International Radar Symposium.

[10]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[11]  Stephen P. Boyd,et al.  Determinant Maximization with Linear Matrix Inequality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[12]  Douglas A. Gray,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Trans. Signal Process..

[13]  W.L. Melvin,et al.  Knowledge-aided signal processing: a new paradigm for radar and other advanced sensors , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Qingwen Zhang,et al.  Parametric adaptive matched filter for airborne radar applications , 2000, IEEE Trans. Aerosp. Electron. Syst..

[15]  K. Gerlach,et al.  Errata: fast converging adaptive processor for a structured covariance matrix , 2001 .

[16]  Giuseppe Ricci,et al.  Recursive estimation of the covariance matrix of a compound-Gaussian process and its application to adaptive CFAR detection , 2002, IEEE Trans. Signal Process..

[17]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[18]  W.L. Melvin,et al.  Analyzing space-time adaptive processors using measured data , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[19]  Seung-Jean Kim,et al.  Maximum Likelihood Covariance Estimation with a Condition Number Constraint , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[20]  Karl Gerlach,et al.  Fast converging adaptive processor or a structured covariance matrix , 2000, IEEE Trans. Aerosp. Electron. Syst..

[21]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1998 .

[22]  Antonio De Maio,et al.  Rao Test for Adaptive Detection in Gaussian Interference With Unknown Covariance Matrix , 2007, IEEE Transactions on Signal Processing.

[23]  Dimitris G. Manolakis,et al.  Statistical and Adaptive Signal Processing , 2000 .

[24]  Daniel Pérez Palomar,et al.  Fractional QCQP With Applications in ML Steering Direction Estimation for Radar Detection , 2011, IEEE Transactions on Signal Processing.

[25]  William L. Melvin,et al.  Space-time adaptive radar performance in heterogeneous clutter , 2000, IEEE Trans. Aerosp. Electron. Syst..

[26]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[27]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[28]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[29]  Jean-Yves Tourneret,et al.  Knowledge-Aided Bayesian Detection in Heterogeneous Environments , 2007, IEEE Signal Processing Letters.

[30]  P. Gurram,et al.  Spectral-domain covariance estimation with a priori knowledge , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[31]  Jian Li,et al.  On Using a priori Knowledge in Space-Time Adaptive Processing , 2008, IEEE Transactions on Signal Processing.

[32]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[33]  F. Gini,et al.  Knowledge-based systems for adaptive radar [Guest editorial] , 2006, IEEE Signal Processing Magazine.

[34]  Andrea L. Kraay,et al.  A Physically Constrained Maximum-Likelihood Method for Snapshot-Deficient Adaptive Array Processing , 2007, IEEE Transactions on Signal Processing.

[35]  Daniel R. Fuhrmann,et al.  A CFAR adaptive matched filter detector , 1992 .

[36]  Ramon Nitzberg Application of Maximum Likelihood Estimation of Persymmetric Covariance Matrices to Adaptive Processing , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[37]  Zhi-Quan Luo,et al.  Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem , 2003, IEEE Trans. Signal Process..

[38]  Gene H. Golub,et al.  Matrix computations , 1983 .

[39]  Braham Himed,et al.  A simplified parametric GLRT for STAP detection , 2009, 2009 IEEE Radar Conference.

[40]  Alfonso Farina,et al.  Antenna-Based Signal Processing Techniques for Radar Systems , 1992 .

[41]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[42]  A. Farina,et al.  Demonstration of knowledge-aided space-time adaptive processing using measured airborne data , 2006 .

[43]  Randy L. Haupt,et al.  Introduction to Adaptive Arrays , 1980 .

[44]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[45]  A. Farina,et al.  Improvement factor for real sea-clutter Doppler frequency spectra , 1996 .

[46]  Christ D. Richmond,et al.  Performance of a class of adaptive detection algorithms in nonhomogeneous environments , 2000, IEEE Trans. Signal Process..

[47]  Daniel R. Fuhrmann Application of Toeplitz covariance estimation to adaptive beamforming and detection , 1991, IEEE Trans. Signal Process..

[48]  W.L. Melvin,et al.  An approach to knowledge-aided covariance estimation , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[49]  Hongbin Li,et al.  A Bayesian Parametric Test for Multichannel Adaptive Signal Detection in Nonhomogeneous Environments , 2010, IEEE Signal Processing Letters.

[50]  J. H. Wilkinson,et al.  AN ESTIMATE FOR THE CONDITION NUMBER OF A MATRIX , 1979 .

[51]  Alfred O. Hero,et al.  Shrinkage Algorithms for MMSE Covariance Estimation , 2009, IEEE Transactions on Signal Processing.

[52]  Marco Lops,et al.  Adaptive detection schemes in compound-Gaussian clutter , 1998 .

[53]  Jian Li,et al.  Computationally efficient maximum likelihood estimation of structured covariance matrices , 1999, IEEE Trans. Signal Process..