Multisensor Data Synergy of Terra-MODIS, Aqua-MODIS, and Suomi NPP-VIIRS for the Retrieval of Aerosol Optical Depth and Land Surface Reflectance Properties

A novel multisensor synergy method, using data from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua as well as Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership, is presented to retrieve optical atmosphere-surface properties. By adopting three-sensor observations’ synergy, the proposed method can grasp the multitemporal characteristics of aerosol optical depth (AOD) and the multidirectional characteristics of surface reflectance. In addition, the bidirectional reflectance distribution function (BRDF) can be derived at daily scale by adopting the novel shape function constrained BRDF retrieval (SFCBR) method. The 550-nm AOD retrieval result of the proposed method is validated by AErosol RObotic NETwork (AERONET) measurement at Beijing, XiangHe, Noto, and Gwangju_GIST sites with $R^{2}$ equaling to 0.78, 0.75, 0.70, and 0.75, respectively. Compared with MODIS/VIIRS AOD official product, the proposed method shows higher coverage rate (especially in AERONET Beijing site with approximately 50% increase) with comparative accuracy. The expected error of the retrieved AOD from the proposed method is estimated as $\Delta \tau = \pm 0.05 \pm 0.24\tau $ . The correlation coefficients of BRDF-derived albedo time series between the proposed method and MODIS BRDF/Albedo product can reach up to 0.85 with an obvious improvement in temporal resolution by adopting an SFCBR method. The average relative differences of BRDF shape function between the retrieval result and MODIS BRDF/Albedo product in all directions equal to 0.026, 0.036, 0.037, and 0.016 in AERONET Beijing, XiangHe, Noto, and Gwangju_GIST sites, respectively.

[1]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[2]  J. Ross The radiation regime and architecture of plant stands , 1981, Tasks for vegetation sciences 3.

[3]  P. Deschamps,et al.  Influence of the atmosphere on space measurements of directional properties. , 1983, Applied optics.

[4]  T. L. Wolfe,et al.  An assessment of the impact of pollution on global cloud albedo , 1984 .

[5]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[6]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[7]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[8]  J. Kiehl,et al.  The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing , 1993, Science.

[9]  Yoram J. Kaufman,et al.  Effect of Amazon smoke on cloud microphysics and albedo - analysis from satellite imagery , 1993 .

[10]  R. J. Flowerdew,et al.  An approximation to improve accuracy in the derivation of surface reflectances from multi‐look satellite radiometers , 1995 .

[11]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[12]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[13]  S. Running,et al.  Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active , 1998 .

[14]  Bernard Pinty,et al.  Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[15]  Gerrit de Leeuw,et al.  Retrieval of aerosol optical depth over land using two‐angle view satellite radiometry during TARFOX , 1998 .

[16]  Peter R. J. North,et al.  Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multiangle imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[17]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[18]  J. Veefkind,et al.  Aerosol optical depth over Europe in August 1997 derived from ATSR‐2 data , 2000 .

[19]  H. Swenson,et al.  Using VIIRS to provide data continuity with MODIS , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[20]  Alan H. Strahler,et al.  Improving MODIS surface BRDF/Albedo retrieval with MISR multiangle observations , 2002, IEEE Trans. Geosci. Remote. Sens..

[21]  B. Brunekreef,et al.  Air pollution and health , 2002, The Lancet.

[22]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[23]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[24]  Nadine Gobron,et al.  Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land , 2005 .

[25]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[26]  D. Chu,et al.  Improving National Air Quality Forecasts with Satellite Aerosol Observations , 2005 .

[27]  Yong Xue,et al.  Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS , 2005 .

[28]  R. Dickinson,et al.  Analysis of leaf area index products from combination of MODIS Terra and Aqua data , 2006 .

[29]  Bernhard Geiger,et al.  Spectral Normalization and Fusion of Optical Sensors for the Retrieval of BRDF and Albedo: Application to VEGETATION, MODIS, and MERIS Data Sets , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[30]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[31]  Marion Schroedter-Homscheidt,et al.  Improvements of synergetic aerosol retrieval for ENVISAT , 2008 .

[32]  P. North,et al.  Aerosol optical depth from dual-view (A)ATSR satellite observations , 2009 .

[33]  Christopher Justice,et al.  Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional Reflectances , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[34]  Didier Tanré,et al.  Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations , 2010 .

[35]  K. Lee,et al.  Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days , 2010 .

[36]  Yong Xue,et al.  Retrieval of aerosol optical depth over bright land surfaces by coupling bidirectional reflectance distribution function model and aerosol retrieval model , 2012 .

[37]  Jack Xiong,et al.  Terra and Aqua MODIS Instrument Status , 2012 .

[38]  Richard Siddans,et al.  Use of MODIS-derived surface reflectance data in the ORAC-AATSR aerosol retrieval algorithm: Impact of differences between sensor spectral response functions , 2012 .

[39]  Chen Hongbin,et al.  Identification of Aerosol Types and Their Optical Properties in the North China Plain Based on Long-Term AERONET Data , 2013 .

[40]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[41]  Andrew M. Sayer,et al.  Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data , 2013 .

[42]  José A. Sobrino,et al.  Analysis of directional effects on atmospheric correction , 2013 .

[43]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[44]  P. North,et al.  Synergistic angular and spectral estimation of aerosol properties using CHRIS/PROBA-1 and simulated Sentinel-3 data , 2014 .

[45]  Michael J. Garay,et al.  Improving satellite-retrieved aerosol microphysical properties using GOCART data , 2014 .

[46]  Edith Rodriguez,et al.  Determination of land surface reflectance using the AATSR dual-view capability , 2014 .

[47]  B. Stevens Rethinking the Lower Bound on Aerosol Radiative Forcing , 2015 .

[48]  Yi Qin,et al.  Characterizing the Aerosol and Surface Reflectance Over Australia Using AATSR , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[49]  D. Lowe,et al.  Aerosol–radiation–cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution , 2015 .

[50]  Min Min,et al.  Multi-sensor quantification of aerosol-induced variability in warm clouds over eastern China , 2015 .

[51]  Robert E. Holz,et al.  Towards a long-term global aerosol optical depth record: applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance , 2015 .

[52]  W. Verhoef,et al.  Multi-temporal, multi-sensor retrieval of terrestrial vegetation properties from spectral–directional radiometric data , 2015 .

[53]  A. Lacis,et al.  How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States , 2015 .

[54]  Gabriele Curci,et al.  Analysis of the WRF-Chem contributions to AQMEII phase2 with respect to aerosol radiative feedbacks on meteorology and pollutant distributions , 2015 .

[55]  Y. Lee,et al.  Uncertainties in global aerosols and climate effects due to biofuel emissions , 2015 .

[56]  Yujie Wang,et al.  Assessing PM2.5 Exposures with High Spatiotemporal Resolution across the Continental United States. , 2016, Environmental science & technology.

[57]  Christina Kluge,et al.  Data Reduction And Error Analysis For The Physical Sciences , 2016 .

[58]  Andrew S. Gibson,et al.  MOPITT Mechanisms 16 Years In-Orbit Operation on TERRA , 2016 .

[59]  Gerrit de Leeuw,et al.  The ADV/ASV AATSR aerosol retrieval algorithm: current status and presentation of a full-mission AOD dataset , 2016, Int. J. Digit. Earth.

[60]  Zhengqiang Li,et al.  Retrieval of Aerosol Optical Depth Using the Empirical Orthogonal Functions (EOFs) Based on PARASOL Multi-Angle Intensity Data , 2017, Remote. Sens..

[61]  Xingfa Gu,et al.  Synergy of MODIS and AATSR for better retrieval of aerosol optical depth and land surface directional reflectance , 2017 .