Contribution of Fish to the Marine Inorganic Carbon Cycle

Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.

[1]  M. Grosell,et al.  Effects of salinity on intestinal bicarbonate secretion and compensatory regulation of acid–base balance in Opsanus beta , 2008, Journal of Experimental Biology.

[2]  Frédéric Mélin,et al.  Global-scale predictions of community and ecosystem properties from simple ecological theory , 2008, Proceedings of the Royal Society B: Biological Sciences.

[3]  V. Fabry Marine Calcifiers in a High-CO 2 Ocean , 2022 .

[4]  Vasiliki S. Karpouzi,et al.  Models of the world’s large marine ecosystems: GEF/LME global project Promoting Ecosystem-based Approaches to Fisheries Conservation and Large Marine Ecosystems , 2008 .

[5]  M. Grosell Intestinal anion exchange in marine fish osmoregulation , 2006, Journal of Experimental Biology.

[6]  L. B. Christensen Reconstructing historical abundances of exploited marine mammals at the global scale , 2006 .

[7]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[8]  F. Jensen,et al.  Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine. , 2005, American journal of physiology. Regulatory, integrative and comparative physiology.

[9]  H. Pörtner,et al.  Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History , 2004 .

[10]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[11]  Christopher B. Field,et al.  The global carbon cycle: integrating humans, climate and the natural world. , 2004 .

[12]  R. Wilson,et al.  Intestinal bicarbonate secretion in marine teleost fish-source of bicarbonate, pH sensitivity, and consequences for whole animal acid-base and calcium homeostasis. , 2003, Biochimica et biophysica acta.

[13]  R. Feely,et al.  Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry , 2003 .

[14]  D. Gledhill,et al.  Caco3 precipitation kinetics in waters from the great Bahama bank:: Implications for the relationship between bank hydrochemistry and whitings , 2003 .

[15]  Martin J. Siegert,et al.  EOS Trans. AGU , 2003 .

[16]  R. Schiebel Planktic foraminiferal sedimentation and the marine calcite budget , 2002 .

[17]  R. Feely,et al.  In situ calcium carbonate dissolution in the Pacific Ocean , 2002 .

[18]  R. Feely,et al.  Inorganic carbon in the Indian Ocean: Distribution and dissolution processes , 2002 .

[19]  Jonathan M. Wilson,et al.  Intestinal bicarbonate secretion by marine teleost fish--why and how? , 2002, Biochimica et biophysica acta.

[20]  R. Feely,et al.  Progress made in study of ocean's calcium carbonate budget , 2002 .

[21]  D. Wolf-Gladrow,et al.  Carbonate dissolution in copepod guts: a numerical model , 2001 .

[22]  B. Seibel,et al.  Potential Impacts of CO 2 Injection on Deep-Sea Biota , 2001 .

[23]  Kitack Lee Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon , 2001 .

[24]  William M. Balch,et al.  Biologically mediated dissolution of calcium carbonate above the chemical lysocline , 1999 .

[25]  A. Clarke,et al.  Scaling of metabolic rate with body mass and temperature in teleost fish , 1999 .

[26]  J. Rotmans,et al.  Global Biogeochemical Cycles , 1999 .

[27]  J. Ashby References and Notes , 1999 .

[28]  R. Parker The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle , 1997 .

[29]  Gilmour,et al.  Intestinal base excretion in the seawater-adapted rainbow trout: a role in acid-base balance? , 1996, The Journal of experimental biology.

[30]  J. Milliman,et al.  Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss , 1996 .

[31]  P. Wal,et al.  Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi , 1995 .

[32]  C. Brownlee,et al.  A microinjection technique using a pH-sensitive dye to determine the gut pH of Calanus helgolandicus , 1995 .

[33]  R. Harris,et al.  Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role in inorganic carbon flux , 1994 .

[34]  P. Walsh,et al.  Carbonate deposits in marine fish intestines: A new source of biomineralization , 1991 .

[35]  P. Smart,et al.  Potassium/argon dating , 1991 .

[36]  John W. Morse,et al.  Geochemistry of Sedimentary Carbonates , 1990 .

[37]  S. Wood,et al.  Geochim. cosmochim. acta , 1990 .

[38]  R. Feely,et al.  Winter-summer variations of calcite and aragonite saturation in the Northeast Pacific , 1988 .

[39]  K. Tanaka The stratigraphy of Mars.Proc.Lunar Planet.Sci.Conf.17 , 1986 .

[40]  P. Wiebe,et al.  Particulate matter distributions, chemistry and flux in the panama basin: response to environment forcing , 1986 .

[41]  R. Feely,et al.  Water column dissolution of aragonite in the Pacific Ocean , 1984, Nature.

[42]  D. H. Scott,et al.  The geological investigation of the Taurus-Littrow Valley: Apollo 17 landing site , 1977 .

[43]  S. Jørgensen,et al.  Movement rules for individual-based models of stream fish , 1999 .

[44]  Ingrid Cranfield Atlas of the Living Resources of the Seas , 1974 .