Tunable Berry curvature, valley and spin Hall effect in Bilayer MoS2

We show that in bilayers of transition metal dichalcogenides (TMDCs) both intra-layer and inter-layer couplings give important contributions to the Berry curvature in the K and K valleys of the Brillouin zone. Because of the inter-layer contribution the Berry curvature is stacking dependent and the commonly available 3R type and 2H type bilayers have different and highly tunable Berry curvature properties. The Berry curvature leads to valley Hall and spin Hall effects and we study them in 2H stacked bilayer MoS2. Interestingly, the Hall conductivities may change sign as a function of the external electric field in this system which is reminiscent of the properties of lattice Chern insulators.

[1]  G. Burkard,et al.  Tunable Berry curvature, valley and spin Hall effect in Bilayer MoS2 , 2018, NanoScience + Engineering.

[2]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[3]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, 1208.6069.

[4]  Wang Yao,et al.  Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.

[5]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[6]  Di Xiao,et al.  Berry Phase Modification to the Energy Spectrum of Excitons. , 2015, Physical review letters.

[7]  Yingchang Yang,et al.  Tunable Valley Polarization and Valley Orbital Magnetic Moment Hall Effect in Honeycomb Systems with Broken Inversion Symmetry , 2014, Scientific Reports.

[8]  B. Bernevig Topological Insulators and Topological Superconductors , 2013 .

[9]  C. Strunk,et al.  Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures , 2017, Nature Communications.

[10]  A. Srivastava,et al.  Signatures of Bloch-Band Geometry on Excitons: Nonhydrogenic Spectra in Transition-Metal Dichalcogenides. , 2015, Physical review letters.

[11]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[12]  Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. , 2013, Nature communications.

[13]  Shoushun Chen,et al.  Stacking-Dependent Interlayer Coupling in Trilayer MoS₂ with Broken Inversion Symmetry. , 2015, Nano letters.

[14]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[15]  T. Fukui,et al.  Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances , 2005, cond-mat/0503172.

[16]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[17]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[18]  G. Burkard,et al.  Monolayer MoS 2 : Trigonal warping, the Γ valley, and spin-orbit coupling effects , 2013, 1304.4084.

[19]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[20]  Qian Niu,et al.  Berry phase effects on electronic properties , 2009, 0907.2021.

[21]  O. Kolosov,et al.  Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates , 2013, Scientific Reports.

[22]  Y. Tokura,et al.  Two-Dimensional Valley Electrons and Excitons in Noncentrosymmetric 3R−MoS2 , 2015, 1502.07480.

[23]  A. Morpurgo,et al.  Topological origin of subgap conductance in insulating bilayer graphene , 2010, 1009.4851.

[24]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[25]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[26]  D. Costanzo,et al.  Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides Revealed by Wavelength-Dependent Mapping. , 2017, Nano letters.

[27]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[28]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[29]  J. Shan,et al.  Electrical control of the valley Hall effect in bilayer MoS2 transistors. , 2015, Nature nanotechnology.

[30]  Shuichi Murakami,et al.  Dissipationless Quantum Spin Current at Room Temperature , 2003, Science.