Observer-independent cytoarchitectonic mapping of the human superior parietal cortex.

The human superior parietal cortex (SPC; Brodmann areas [BA] 5 and 7) comprises the superior parietal lobule and medial wall of the intraparietal sulcus (mIPS) laterally and the posterior paracentral lobule and precuneus medially. Receptor autoradiographic and functional studies indicate more complex segregations in the SPC than suggested by Brodmann (1909). Differences to other historical maps may be due to anatomical variability between brains and different definition criteria for areas. To provide a reliable anatomical reference of the SPC, we performed an observer-independent cytoarchitectonic mapping of this region in 10 human postmortem brains. Cytoarchitecture was analyzed in cell-body-stained brain sections using gray-level index profiles. Multivariate statistical analysis of profile shape allowed the exact localization of cytoarchitectonic borders and quantification of interareal differences. We identified 3 areas in BA 5 (5L, 5M, and 5Ci), 4 in BA 7 (7PC, 7A, 7P, and 7M), and 1 in the anterior mIPS (hIP3). Locations of their borders relative to macroanatomical landmarks varied considerably between brains and hemispheres. Cytoarchitectonic profiles of areas 5Ci and hIP3 differed most from those of the remaining areas, and differences between subareas were stronger in BA 5 than in BA 7. These areas are possible structural correlates of functional segregations within the SPC.

[1]  C. Yoshinaga-Itano,et al.  The Effect of Hearing Loss on the Development of Metacognitive Strategies in Written Language. , 1996 .

[2]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[3]  Steven Laureys,et al.  Cytology and functionally correlated circuits of human posterior cingulate areas , 2006, NeuroImage.

[4]  Richard S. J. Frackowiak,et al.  Multiple nonprimary motor areas in the human cortex. , 1997, Journal of neurophysiology.

[5]  A. Geers,et al.  Analysis of Narrative Ability in Children with Cochlear Implants , 2001, Ear and hearing.

[6]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[7]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[8]  J. Decety,et al.  Functional anatomy of execution, mental simulation, observation, and verb generation of actions: A meta‐analysis , 2001, Human brain mapping.

[9]  Philip M. McCarthy,et al.  Linguistic Features of Writing Quality , 2010 .

[10]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[11]  H. J. Uldall Speech and writing , 1944 .

[12]  Åsa Wengelin,et al.  Text Production in Adults with Reading and Writing Difficulties , 2002 .

[13]  M. Mesulam,et al.  Remapping attentional priorities: differential contribution of superior parietal lobule and intraparietal sulcus. , 2007, Cerebral cortex.

[14]  J. Morrison,et al.  Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex , 1989, The Journal of comparative neurology.

[15]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[16]  Katrin Amunts,et al.  Postnatal development of the human primary motor cortex: a quantitative cytoarchitectonic analysis , 1995, Anatomy and Embryology.

[17]  Simon B. Eickhoff,et al.  Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex , 2007, NeuroImage.

[18]  Thomas J. Ross,et al.  Neuroanatomical dissociation between bottom–up and top–down processes of visuospatial selective attention , 2006, NeuroImage.

[19]  C. Curtis Prefrontal and parietal contributions to spatial working memory , 2006, Neuroscience.

[20]  A. Schleicher,et al.  Asymmetry in the Human Motor Cortex and Handedness , 1996, NeuroImage.

[21]  R. T. Kellogg Attentional overload and writing performance: effects of rough draft and outline strategies , 1988 .

[22]  C. Galletti,et al.  Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto‐occipital sulcus of the macaque: a cytoarchitectonic study , 2005, The European journal of neuroscience.

[23]  Lauretta Passarelli,et al.  Somatosensory Cells in Area PEc of Macaque Posterior Parietal Cortex , 2006, The Journal of Neuroscience.

[24]  M. Inase,et al.  Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. , 1991, Journal of neurophysiology.

[25]  K. Hansson,et al.  Novel word learning and its relation to working memory and language in children with mild-to-moderate hearing impairment and children with specific language impairment , 2006 .

[26]  Karl Zilles,et al.  The human parietal cortex: a novel approach to its architectonic mapping. , 2003, Advances in neurology.

[27]  B. MacWhinney The CHILDES project: tools for analyzing talk , 1992 .

[28]  A. Schleicher,et al.  The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. , 2006, Cerebral cortex.

[29]  M. Mayer,et al.  One Frog Too Many , 1977 .

[30]  Elena Borra,et al.  Architectonic organization of the inferior parietal convexity of the macaque monkey , 2006, The Journal of comparative neurology.

[31]  A. Battaglia-Mayer,et al.  Visual Motion Responses of Neurons in the Caudal Area PE of Macaque Monkeys , 2001, The Journal of Neuroscience.

[32]  Birgitta Sahlén,et al.  Process and product in writing—a methodological contribution to the assessment of written narratives in 8–12-year-old Swedish children using ScriptLog , 2008, Logopedics, phoniatrics, vocology.

[33]  C. Norbury,et al.  Phonological processing, language, and literacy: a comparison of children with mild-to-moderate sensorineural hearing loss and those with specific language impairment. , 2001, Journal of child psychology and psychiatry, and allied disciplines.

[34]  S. B. Eickhoff,et al.  Quantitative architectural analysis: a new approach to cortical mapping , 2005, Anatomy and Embryology.

[35]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[36]  Calyampudi R. Rao,et al.  Anthropometric survey of the United Provinces, 1941: a statistical study. , 1949 .

[37]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[38]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[39]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[40]  Christian Büchel,et al.  The predictive value of white matter organization in posterior parietal cortex for spatial visualization ability , 2006, NeuroImage.

[41]  E. Adolph THE SIZE OF THE BODY AND THE SIZE OF THE ENVIRONMENT IN THE GROWTH OF TADPOLES , 1931 .

[42]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[43]  J. W. Lewis,et al.  Anatomical evidence for the posterior boundary of area 2 in the macaque monkey. , 1999, Somatosensory & motor research.

[44]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[45]  A. Cavanna,et al.  The precuneus: a review of its functional anatomy and behavioural correlates. , 2006, Brain : a journal of neurology.

[46]  Paul S. Morgan,et al.  Parietal updating of limb posture: An event-related fMRI study , 2006, Neuropsychologia.

[47]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[48]  Guoxing Yu,et al.  Lexical Diversity in Writing and Speaking Task Performances , 2010 .

[49]  F. Lacquaniti,et al.  Representing spatial information for limb movement: role of area 5 in the monkey. , 1995, Cerebral cortex.

[50]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[51]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[52]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[53]  Karl J. Friston,et al.  Cerebral Asymmetry and the Effects of Sex and Handedness on Brain Structure: A Voxel-Based Morphometric Analysis of 465 Normal Adult Human Brains , 2001, NeuroImage.

[54]  Ivan Toni,et al.  Information processing in human parieto-frontal circuits during goal-directed bimanual movements , 2006, NeuroImage.

[55]  Victoria Johansson,et al.  Looking at the keyboard or the monitor: relationship with text production processes , 2010 .

[56]  K. Brodmann,et al.  Die allgemeine Chirurgie der Gehirnkrankheiten , 1914 .

[57]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  T Allison,et al.  Localization of functional regions of human mesial cortex by somatosensory evoked potential recording and by cortical stimulation. , 1996, Electroencephalography and clinical neurophysiology.

[59]  Nicola Palomero-Gallagher,et al.  Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas , 2005, NeuroImage.

[60]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[61]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[62]  Ludo Verhoeven,et al.  Cross-linguistic perspectives on the development of text-production abilities: Speech and writing , 2002 .

[63]  Georg Northoff,et al.  Self-referential processing in our brain—A meta-analysis of imaging studies on the self , 2006, NeuroImage.

[64]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[65]  David Gleicher A Statistical Study , 2006 .

[66]  K. Amunts,et al.  Consequences of large interindividual variability for human brain atlases: converging macroscopical imaging and microscopical neuroanatomy , 2005, Anatomy and Embryology.

[67]  Victoria Johansson,et al.  Developmental aspects of text production in writing and speech , 2009 .

[68]  Timothy Edward John Behrens,et al.  Connection patterns distinguish 3 regions of human parietal cortex. , 2006, Cerebral cortex.

[69]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[70]  David Malvern,et al.  Lexical Diversity and Language Development , 2004 .

[71]  A. Toga,et al.  Hemispheric asymmetries in cortical thickness. , 2006, Cerebral cortex.

[72]  Tina Ibertsson Cognition and communication in children/adolescents with cochlear implant , 2009 .

[73]  J. Culham,et al.  The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? , 2006, Neuropsychologia.

[74]  Marco Iacoboni,et al.  Visuo-motor integration and control in the human posterior parietal cortex: Evidence from TMS and fMRI , 2006, Neuropsychologia.

[75]  B. Lyxell,et al.  The relationship between reading comprehension, working memory and language in children with cochlear implants , 2007 .

[76]  Gereon R. Fink,et al.  Human medial intraparietal cortex subserves visuomotor coordinate transformation , 2004, NeuroImage.

[77]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[78]  Chris A Clark,et al.  White matter pathway asymmetry underlies functional lateralization. , 2006, Cerebral cortex.

[79]  P. B. Cipolloni,et al.  Cytoarchitecture and cortical connections of the posterior cingulate and adjacent somatosensory fields in the rhesus monkey , 2004, The Journal of comparative neurology.

[80]  Katrin Amunts,et al.  Left-Right Asymmetry in Volume and Number of Neurons in Adult Broca's Area , 2006, Cortex.

[81]  Richard A. Andersen,et al.  FMRI evidence for a 'parietal reach region' in the human brain , 2003, Experimental Brain Research.

[82]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[83]  K Amunts,et al.  A stereological approach to human cortical architecture: identification and delineation of cortical areas , 2000, Journal of Chemical Neuroanatomy.

[84]  Alan C. Evans,et al.  Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. , 2001, Cerebral cortex.

[85]  C. Miniscalco,et al.  P0091 - Language problems at 2½-years of age and their relationship with school-age language impairment and neuropsychiatric disorders , 2008, European Psychiatry.

[86]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[87]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[88]  Guy A. Orban,et al.  Mapping the parietal cortex of human and non-human primates , 2006, Neuropsychologia.

[89]  B. Ackerman,et al.  Performative bias in children's interpretations of ambiguous referential communications. , 1981, Child development.

[90]  K. Amunts,et al.  Advances in cytoarchitectonic mapping of the human cerebral cortex. , 2001, Neuroimaging clinics of North America.

[91]  C. Woolsey Multiple somatic areas , 1981 .

[92]  Christine Yoshinaga-Itano,et al.  Language of Early- and Later-identified Children With Hearing Loss , 1998, Pediatrics.

[93]  J. Morrison,et al.  Neurochemical phenotype of corticocortical connections in the macaque monkey: Quantitative analysis of a subset of neurofilament protein‐immunoreactive projection neurons in frontal, parietal, temporal, and cingulate cortices , 1995, The Journal of comparative neurology.

[94]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[95]  A. Schleicher,et al.  Ventral visual cortex in humans: Cytoarchitectonic mapping of two extrastriate areas , 2007, Human brain mapping.

[96]  Dorothy V M Bishop,et al.  Narrative skills of children with communication impairments. , 2003, International journal of language & communication disorders.

[97]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[98]  S. Gathercole Nonword repetition and word learning: The nature of the relationship , 2006, Applied Psycholinguistics.

[99]  A. Löfqvist,et al.  Working memory and novel word learning in children with hearing impairment and children with specific language impairment. , 2004, International journal of language & communication disorders.

[100]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[101]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[102]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[103]  E Wyllie,et al.  Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. , 1994, Electroencephalography and clinical neurophysiology.

[104]  Guy Bouvier,et al.  Stimulation of human somatosensory cortex: tactile and body displacement perceptions in medial regions , 2004, Experimental Brain Research.

[105]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[106]  Elisabeth A. Murray,et al.  Supplementary Sensory Area The Medial Parietal Cortex in the Monkey , 1981 .

[107]  Åsa Wengelin,et al.  Aphasia and the process of revision in writing a text , 2008, Clinical linguistics & phonetics.

[108]  Katrin Amunts,et al.  Outstanding language competence and cytoarchitecture in Broca’s speech region , 2004, Brain and Language.

[109]  S. Johnston,et al.  Children With Cochlear Implants , 2003 .

[110]  D. Salat,et al.  Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Alexandra Battaglia-Mayer,et al.  Optic ataxia as a result of the breakdown of the global tuning fields of parietal neurones. , 2002, Brain : a journal of neurology.

[112]  Victoria Johansson,et al.  Toward a crosslinguistic comparison of lexical quanta in speech and writing , 2002 .

[113]  Katrin Amunts,et al.  Broca's region: Cytoarchitectonic asymmetry and developmental changes , 2003, The Journal of comparative neurology.

[114]  Christopher A. Buneo,et al.  Direct visuomotor transformations for reaching , 2002, Nature.

[115]  K Amunts,et al.  Left and right superior parietal lobule in tactile object discrimination , 2004, The European journal of neuroscience.

[116]  Nicola Palomero-Gallagher,et al.  Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: Relations to visual and somatosensory regions , 2005, NeuroImage.

[117]  Riitta Hari,et al.  Activation of human mesial cortex during somatosensory target detection task , 1996, Brain Research.

[118]  A. Kamhi,et al.  Novel word learning in children with hearing impairment. , 1995, Journal of speech and hearing research.

[119]  P. Pietrini,et al.  Neural correlates of spatial working memory in humans: A functional magnetic resonance imaging study comparing visual and tactile processes , 2006, Neuroscience.

[120]  A. Geers,et al.  Use of Speech by Children From Total Communication Programs Who Wear Cochlear Implants , 2002 .

[121]  G. Rizzolatti,et al.  Corticocortical connections of area F3 (SMA‐proper) and area F6 (pre‐SMA) in the macaque monkey , 1993, The Journal of comparative neurology.

[122]  H. Kennedy,et al.  Two Cortical Systems for Reaching in Central and Peripheral Vision , 2005, Neuron.

[123]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[124]  C. Yoshinaga-Itano,et al.  Expressive Vocabulary Development of Infants and Toddlers Who Are Deaf or Hard of Hearing. , 1999 .

[125]  C. J. Fowler,et al.  Voiding and MRI Analysis of the Brain , 1999, International Urogynecology Journal.

[126]  R. T. Kellogg,et al.  Concurrent activation of high- and low-level production processes in written composition , 2002, Memory & cognition.

[127]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.