Proof Analysis: A Contribution to Hilbert's Last Problem
暂无分享,去创建一个
[1] Heinrich Wansing,et al. Sequent Systems for Modal Logics , 2002 .
[2] R. Statman,et al. Equality in the Presence of Apartness , 1979 .
[3] Torben Braüner,et al. A Cut-Free Gentzen Formulation of the Modal Logic S5 , 2000, Log. J. IGPL.
[4] David Hilbert,et al. Grundlagen der Geometrie , 2022 .
[5] B. Jack Copeland,et al. The Genesis of Possible Worlds Semantics , 2002, J. Philos. Log..
[6] S. Lane,et al. Sheaves In Geometry And Logic , 1992 .
[7] Silvio Valentini,et al. The modal logic of provability: Cut-elimination , 1983, J. Philos. Log..
[8] Grigori Mints,et al. Indexed systems of sequents and cut-elimination , 1997, J. Philos. Log..
[9] Fabio Massacci,et al. Single Step Tableaux for Modal Logics , 2000, Journal of Automated Reasoning.
[10] Sara Negri,et al. Proof Analysis in Modal Logic , 2005, J. Philos. Log..
[11] Thierry Coquand,et al. Proof-theoretical analysis of order relations , 2004, Arch. Math. Log..
[12] Greg Restall,et al. An Introduction to Substructural Logics , 2000 .
[13] V. Jankov. The Calculus of the Weak "law of Excluded Middle" , 1968 .
[14] Robert Goldblatt,et al. Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..
[15] R. A. Bull,et al. Basic Modal Logic , 1984 .
[16] Kazuo Matsumoto,et al. Gentzen method in modal calculi. II , 1957 .
[17] Stanley Burris,et al. Polynomial Time Uniform Word Problems , 1995, Math. Log. Q..
[18] Hao Wang,et al. Toward Mechanical Mathematics , 1960, IBM J. Res. Dev..
[19] Sara Negri. Logic Colloquium 2005: Proof analysis in non-classical logics , 2007 .
[20] Stig Kanger,et al. A Simplified Proof Method for Elementary Logic , 1959 .
[21] E. Mares. Relevant Logic: A Philosophical Interpretation , 2004 .
[22] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[23] Melvin Fitting. A Simple Propositional S5 Tableau System , 1999, Ann. Pure Appl. Log..
[24] Craig Smorynski. Elementary Intuitionistic Theories , 1973, J. Symb. Log..
[25] Arnon Avron,et al. On modal systems having arithmetical interpretations , 1984, Journal of Symbolic Logic.
[26] W. Pohlers. Proof Theory: The First Step into Impredicativity , 2008 .
[27] S. Vickers. Topology via Logic , 1989 .
[28] Helmut Schwichtenberg,et al. Basic proof theory , 1996, Cambridge tracts in theoretical computer science.
[29] Jan von Plato,et al. Gentzen's Logic , 2009, Logic from Russell to Church.
[30] Samuel R. Buss,et al. On Herbrand's Theorem , 1994, LCC.
[31] Sara Negri,et al. The duality of lcassical and constructive notions and proofs , 2005, From sets and types to topology and analysis.
[32] Dana S. Scott,et al. Extending the Topological Interpretation to Intuitionistic Analysis, II , 1970 .
[33] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[34] Jan von Plato,et al. In the Shadows of the Löwenheim-Skolem Theorem: Early Combinatorial Analyses of Mathematical Proofs , 2007, Bull. Symb. Log..
[35] Luca Viganò,et al. Natural Deduction for Non-Classical Logics , 1998, Stud Logica.
[36] R. L. Goodstein,et al. Provability in logic , 1959 .
[37] Sara Negri,et al. Structural proof theory , 2001 .
[38] Marco Borga,et al. On some proof theoretical properties of the modal logic GL , 1983 .
[39] Sara Negri,et al. Proof systems for lattice theory , 2004, Math. Struct. Comput. Sci..
[40] Andreas Blass. Topoi and Computation , 1993, Current Trends in Theoretical Computer Science.
[41] E. Szpilrajn. Sur l'extension de l'ordre partiel , 1930 .
[42] Alfred Tarski,et al. Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.
[43] Silvio Valentini,et al. The modal logic of provability. The sequential approach , 1982, J. Philos. Log..
[44] Michael Dummett,et al. Modal Logics Between S4 and S5 , 1967 .
[45] J. Girard. Proof Theory and Logical Complexity , 1989 .
[46] T. Coquand,et al. The Hahn-Banach Theorem in Type Theory , 1998 .
[47] Andrei Voronkov,et al. Equality Reasoning in Sequent-Based Calculi , 2001, Handbook of Automated Reasoning.
[48] Haskell B. Curry,et al. The elimination theorem when modality is present , 1952, Journal of Symbolic Logic.
[49] Peter Schroeder-Heister,et al. A natural extension of natural deduction , 1984, Journal of Symbolic Logic.
[50] Saul Kripke,et al. A completeness theorem in modal logic , 1959, Journal of Symbolic Logic.
[51] A. Janiczak,et al. Undecidability of some simple formalized theories , 1953 .
[52] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[53] Greg Restall,et al. Proofnets for S5: sequents and circuits for modal logic , 2007 .
[54] Jan von Plato,et al. Gentzen's Proof of Normalization for Natural Deduction , 2008, Bull. Symb. Log..
[55] Ulrich Kohlenbach,et al. Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.
[56] Sara Negri. Permutability of Rules for Linear Lattices , 2005, J. Univers. Comput. Sci..
[57] Ralph Matthes,et al. Short proofs of normalization for the simply- typed λ-calculus, permutative conversions and Gödel's T , 2003, Arch. Math. Log..
[58] Anil Nerode,et al. Some Lectures on Modal Logic , 1991 .
[59] Dov M. Gabbay,et al. Chapter 13 – Labelled Deductive Systems , 2003 .
[60] Katsumi Sasaki,et al. A Cut-Free Sequent System for the Smallest Interpretability Logic , 2002, Stud Logica.
[61] Andreas Blass. Logic in Computer Ccience Column, guest authors , 1988, Bull. EATCS.
[62] Jan von Plato. FORMALIZATION OF HILBERT'S GEOMETRY OF INCIDENCE AND PARALLELISM , 2004, Synthese.
[63] Saul A. Kripke,et al. Semantical Considerations on Modal Logic , 2012 .
[64] M. Okada,et al. A proof-theoretic study of the correspondence of classical logic and modal logic , 2003, J. Symb. Log..
[65] A. G. Dragálin. Mathematical Intuitionism. Introduction to Proof Theory , 1988 .
[66] Raul Hakli,et al. Reasoning About Collectively Accepted Group Beliefs , 2011, J. Philos. Log..
[67] Patrick Blackburn,et al. Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto , 2000, Log. J. IGPL.
[68] Jan von Plato,et al. Natural deduction with general elimination rules , 2001, Arch. Math. Log..
[69] Heinrich Wansing,et al. Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..
[70] Hans Jürgen Ohlbach,et al. Translation Methods for Non-Classical Logics: An Overview , 1993, Log. J. IGPL.
[71] Ullrich Hustadt,et al. A Principle for Incorporating Axioms into the First-Order Translation of Modal Formulae , 2003, CADE.
[72] Michel Coste,et al. Dynamical method in algebra: effective Nullstellensätze , 2001, Ann. Pure Appl. Log..
[73] R. Solovay. Provability interpretations of modal logic , 1976 .
[74] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[75] Andrea Meinander. A solution of the uniform word problem for ortholattices , 2010, Math. Struct. Comput. Sci..
[76] Masahiko Sato. A Cut-Free Gentzen-Type System for the Modal Logic S5 , 1980, J. Symb. Log..
[77] Phiniki Stouppa. A Deep Inference System for the Modal Logic S5 , 2007, Stud Logica.
[78] M. E. Szabo,et al. The collected papers of Gerhard Gentzen , 1969 .
[79] A. Heyting,et al. Intuitionism: An introduction , 1956 .
[80] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[81] Sara Negri,et al. Permutability of rules in lattice theory , 2002 .
[82] Rajeev Goré,et al. Tableau Methods for Modal and Temporal Logics , 1999 .
[83] Hao Wang. EIGHTY YEARS OF FOUNDATIONAL STUDIES , 1958 .
[84] Sara Negri,et al. Contraction-free sequent calculi for geometric theories with an application to Barr's theorem , 2003, Arch. Math. Log..
[85] Michael Zakharyaschev,et al. Modal Logic , 1997, Oxford logic guides.
[86] Rajeev Goré,et al. VALENTINI’S CUT-ELIMINATION FOR PROVABILITY LOGIC RESOLVED , 2012, The Review of Symbolic Logic.
[87] Alan Smaill,et al. Centre for Intelligent Systems and Their Applications a Systematic Presentation of Quantified Modal Logics a Systematic Presentation of Quantified Modal Logics a Systematic Presentation of Quantified Modal Logics , 2022 .
[88] Erik Palmgren. An intuitionistic axiomatisation of real closed fields , 2002 .
[89] A. Heyting. Zur intuitionistischen Axiomatik der projektiven Geometrie , 1928 .
[90] Sara Negri. Sequent calculus proof theory of intuitionistic apartness and order relations , 1999, Arch. Math. Log..
[91] Sara Negri,et al. Cut Elimination in the Presence of Axioms , 1998, Bulletin of Symbolic Logic.
[92] Roy Dyckhoff,et al. Decision methods for linearly ordered Heyting algebras , 2006, Arch. Math. Log..
[93] J. Plato. The Axioms of Constructive Geometry , 1995, Ann. Pure Appl. Log..
[94] Paul Bernays. Review: Oiva Ketonen, Untersuchungen zum Pradikatenkalkul , 1945 .
[95] Michael Dummett,et al. A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).
[96] Saul A. Kripke,et al. Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .
[97] Jan von Plato,et al. Normal derivability in modal logic , 2005, Math. Log. Q..
[98] Luca Viganò,et al. Labelled non-classical logics , 2000 .
[99] Jan von Plato. Combinatorial analysis of proofs in projective and affine geometry , 2010, Ann. Pure Appl. Log..
[100] L. L. Maksimova,et al. Interpolation properties of superintuitionistic logics , 1979 .
[101] Jan von Plato,et al. Organization and Development of a Constructive Axiomatization , 1995, TYPES.
[102] Jan von Plato,et al. A proof of Gentzen's Hauptsatz without multicut , 2001, Arch. Math. Log..
[103] G. F. Shvarts,et al. Gentzen Style Systems for K45 and K45D , 1989, Logic at Botik.
[104] Daniel Leivant,et al. On the proof theory of the modal logic for arithmetic provability , 1981, Journal of Symbolic Logic.
[105] Saul A. Kripke,et al. Semantical Analysis of Intuitionistic Logic I , 1965 .
[106] H. Läuchli,et al. On the elementary theory of linear order , 1966 .
[107] Sally Popkorn. First Steps in Modal Logic , 1995 .
[108] Marc Bezem,et al. On the Mechanization of the Proof of Hessenberg’s Theorem in Coherent Logic , 2007, Journal of Automated Reasoning.