Achieving semiparametric efficiency bound in longitudinal data analysis with dropouts

In longitudinal data analysis with dropouts, despite its local efficiency in theory, the augmented inverse probability weighted (AIPW) estimator hardly achieves the semiparametric efficiency bound in practice, even if the variance–covariance of the longitudinal outcomes is correctly modeled. In this paper, we propose a method based on conditional empirical likelihood. Assuming missing at random (MAR) mechanism, our estimator is doubly robust and locally efficient. Unlike the AIPW estimator, our estimator does not require to model any second moments, including the variance–covariance of the longitudinal outcomes, in order to achieve the semiparametric efficiency bound.

[1]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[2]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[3]  Marie Davidian,et al.  Improved Doubly Robust Estimation When Data Are Monotonely Coarsened, with Application to Longitudinal Studies with Dropout , 2011, Biometrics.

[4]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[5]  Roderick J. A. Little,et al.  Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .

[6]  Andrew Copas,et al.  Doubly robust generalized estimating equations for longitudinal data , 2009, Statistics in medicine.

[7]  Zhiqiang Tan,et al.  Bounded, efficient and doubly robust estimation with inverse weighting , 2010 .

[8]  J. Robins,et al.  Doubly Robust Estimation in Missing Data and Causal Inference Models , 2005, Biometrics.

[9]  R. W. Wedderburn Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .

[10]  Irène Gijbels,et al.  Sieve Empirical Likelihood and Extensions of the Generalized Least Squares , 2003 .

[11]  Yuichi Kitamura,et al.  Empirical Likelihood Methods in Econometrics: Theory and Practice , 2006 .

[12]  Myunghee C. Paik,et al.  The generalized estimating equation approach when data are not missing completely at random , 1997 .

[13]  Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys , 2002 .

[14]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[15]  G. Chamberlain Asymptotic efficiency in estimation with conditional moment restrictions , 1987 .

[16]  Lu Wang,et al.  Estimation with missing data: beyond double robustness , 2013 .

[17]  Biao Zhang,et al.  Efficient and Doubly Robust Imputation for Covariate-Dependent Missing Responses , 2008 .

[18]  Peisong Han,et al.  A further study of the multiply robust estimator in missing data analysis , 2014 .

[19]  J. Robins,et al.  Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models , 1999 .

[20]  J. Robins,et al.  Semiparametric Efficiency in Multivariate Regression Models with Missing Data , 1995 .

[21]  J. Robins,et al.  Improved double-robust estimation in missing data and causal inference models. , 2012, Biometrika.

[22]  J. Robins,et al.  Semiparametric regression estimation in the presence of dependent censoring , 1995 .

[23]  J. Robins,et al.  Estimation of Regression Coefficients When Some Regressors are not Always Observed , 1994 .

[24]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[25]  Zhiqiang Tan,et al.  A Distributional Approach for Causal Inference Using Propensity Scores , 2006 .

[26]  W. Newey,et al.  16 Efficient estimation of models with conditional moment restrictions , 1993 .

[27]  Peisong Han,et al.  Multiply Robust Estimation in Regression Analysis With Missing Data , 2014 .

[28]  A. Tsiatis Semiparametric Theory and Missing Data , 2006 .

[29]  Yuichi Kitamura,et al.  Empirical Likelihood Based Inference in Conditional Moment Restriction Models , 2004 .

[30]  Biao Zhang,et al.  Empirical‐likelihood‐based inference in missing response problems and its application in observational studies , 2007 .

[31]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[32]  A. Rotnitzky Inverse probability weighted methods , 2008 .