Collagen Fibrillar Structure and Hierarchies

Collagen is most commonly found in animals as long, slender generally cylindrical fibrillar structures with tapered ends that are most easily recognized by a 65–67 nm axial periodicity. Collagen fibrils are substantial constituents of skin, tendon, bone, ligament, cornea, and cartilage, where the fundamental tensile properties of the fibril are finely tuned to serve bespoke biomechanical, and less well understood structural signaling roles.

[1]  Model of the helical portion of a type I collagen microfibril , 1997 .

[2]  T. Aigner,et al.  Immunolocalization of Collagen Types II and III in Single Fibrils of Human Articular Cartilage , 2000, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[3]  Leena Valmu,et al.  Characterization of Recombinant Amino-terminal NC4 Domain of Human Collagen IX , 2004, Journal of Biological Chemistry.

[4]  J. Farjanel,et al.  Liquid crystalline ordering of procollagen as a determinant of three-dimensional extracellular matrix architecture. , 2000, Journal of molecular biology.

[5]  J. W. SMITH,et al.  Molecular Pattern in Native Collagen , 1968, Nature.

[6]  D. Parry,et al.  Crystalline fibril structure of type II collagen in lamprey notochord sheath. , 1984, Journal of molecular biology.

[7]  S. Weiner,et al.  Lamellar bone: structure-function relations. , 1999, Journal of structural biology.

[8]  R. Fraser,et al.  Molecular packing in type I collagen fibrils. , 1987, Journal of molecular biology.

[9]  A. Goodship,et al.  Comparison of collagen fibril populations in the superficial digital flexor tendons of exercised and nonexercised thoroughbreds. , 1997, Equine veterinary journal.

[10]  M. Wakita,et al.  Bundle formation of principal fibers in rat molars. , 1992, Journal of periodontal research.

[11]  J. Cann,et al.  Conformational analysis of the type II and type III collagen alpha-1 chain C-telopeptides by 1H NMR and circular dichroism spectroscopy. , 1993, Journal of biomolecular structure & dynamics.

[12]  K. J. Bos,et al.  Collagen fibril organisation in mammalian vitreous by freeze etch/rotary shadowing electron microscopy. , 2001, Micron.

[13]  K. Kadler Extracellular matrix 1: Fibril-forming collagens. , 1995, Protein profile.

[14]  S Mantero,et al.  Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons--a computational study from molecular to microstructural level. , 2003, Journal of biomechanics.

[15]  Y. Takeuchi,et al.  The Primary Calcification in Bones Follows Removal of Decorin and Fusion of Collagen Fibrils , 1999, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[16]  R. Burgeson,et al.  Collagen XXIV, a Vertebrate Fibrillar Collagen with Structural Features of Invertebrate Collagens , 2003, Journal of Biological Chemistry.

[17]  D. Parry,et al.  Electron microscope evidence for an 80 Å unit in collagen fibrils , 1979, Nature.

[18]  R. Fraser,et al.  Molecular conformation and packing in collagen fibrils. , 1983, Journal of molecular biology.

[19]  M. Morocutti,et al.  Differences in the fibril structure of corneal and tendon collagen. An electron microscopy and X-ray diffraction investigation. , 1986, Connective tissue research.

[20]  K. Kilpatrick,et al.  N-telopeptide of type II collagen interacts with annexin V on human chondrocytes. , 2003 .

[21]  M. Yamamoto,et al.  Cell adhesion receptors for native and denatured type I collagens and fibronectin in rabbit arterial smooth muscle cells in culture. , 1994, Experimental cell research.

[22]  A. Ruggeri,et al.  Ultrastructure of the Connective Tissue Matrix , 1984, Electron Microscopy in Biology and Medicine.

[23]  L. Soslowsky,et al.  Development of tendon structure and function: regulation of collagen fibrillogenesis. , 2005, Journal of musculoskeletal & neuronal interactions.

[24]  D. Parry,et al.  Growth and development of collagen fibrils in connective tissue , 1984 .

[25]  F. Reinholt,et al.  Fibromodulin distribution and association with collagen. , 1994, Matrix biology : journal of the International Society for Matrix Biology.

[26]  D. Hulmes,et al.  Building collagen molecules, fibrils, and suprafibrillar structures. , 2002, Journal of structural biology.

[27]  H. Scheraga,et al.  The energy of formation of internal loops in triple‐helical collagen polypeptides , 1995, Biopolymers.

[28]  E. Adachi,et al.  In vitro formation of hybrid fibrils of type V collagen and type I collagen. Limited growth of type I collagen into thick fibrils by type V collagen. , 1986, Connective tissue research.

[29]  J. A. Chapman The regulation of size and form in the assembly of collagen fibrils in vivo , 1989, Biopolymers.

[30]  F. Ortolani,et al.  A model for type II collagen fibrils: distinctive D-band patterns in native and reconstituted fibrils compared with sequence data for helix and telopeptide domains. , 2000, Biopolymers.

[31]  N. Fullwood,et al.  Corneal and scleral collagens--a microscopist's perspective. , 2001, Micron.

[32]  M. Horton,et al.  Collagen fibrils: nanoscale ropes. , 2007, Biophysical journal.

[33]  Markus J. Buehler,et al.  Nature designs tough collagen: Explaining the nanostructure of collagen fibrils , 2006, Proceedings of the National Academy of Sciences.

[34]  D. Eyre,et al.  Structural characteristics of cross-linking sites in type V collagen of bone. Chain specificities and heterotypic links to type I collagen. , 1994, European journal of biochemistry.

[35]  Jyrki Heino,et al.  Integrin-mediated Cell Adhesion to Type I Collagen Fibrils* , 2004, Journal of Biological Chemistry.

[36]  L. Vaughan,et al.  D-periodic distribution of collagen type IX along cartilage fibrils , 1988, The Journal of cell biology.

[37]  J. Werkmeister,et al.  Organization of fibrillar collagen in the human and bovine cornea: collagen types V and III. , 1997, Connective tissue research.

[38]  F H Silver,et al.  Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. , 1992, Journal of long-term effects of medical implants.

[39]  D. Eyre Articular cartilage and changes in Arthritis: Collagen of articular cartilage , 2001, Arthritis research.

[40]  S. Franc Ultrastructural evidences of a distinct axial domain within native rat tail tendon collagen fibrils. , 1993, Journal of submicroscopic cytology and pathology.

[41]  T. Irving,et al.  The in situ supermolecular structure of type I collagen. , 2001, Structure.

[42]  P. Fratzl,et al.  Fibrillar structure and mechanical properties of collagen. , 1998, Journal of structural biology.

[43]  J. Randall,et al.  Structural Units in Collagen Fibrils , 1954, Nature.

[44]  N. Sasaki,et al.  Time-resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. , 1999, Journal of biomechanics.

[45]  E. Eikenberry,et al.  Collagen XI Nucleates Self-assembly and Limits Lateral Growth of Cartilage Fibrils* , 2000, The Journal of Biological Chemistry.

[46]  M. Giraud‐Guille,et al.  Twisted liquid crystalline supramolecular arrangements in morphogenesis. , 1996, International review of cytology.

[47]  E. Zycband,et al.  Collagen fibrillogenesis in situ: Fibril segments become long fibrils as the developing tendon matures , 1997, Developmental dynamics : an official publication of the American Association of Anatomists.

[48]  R. Suzuki,et al.  Twisted plywood structure of an alternating lamellar pattern in cellular cementum of human teeth , 2000, Anatomy and Embryology.

[49]  J. A. Chapman,et al.  The staining pattern of collagen fibrils. Improved correlation with sequence data. , 1979, Journal of Biological Chemistry.

[50]  H. Hofmann,et al.  Comparative analysis of the sequences of the three collagen chains α1(I), α2 and α1(III): Functional and genetic aspects , 1980 .

[51]  K. Kadler,et al.  Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction. , 2000, Journal of molecular biology.

[52]  T. Einhorn,et al.  Spatial and temporal expression of fibril‐forming minor collagen genes (types V and XI) during fracture healing , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[53]  F. Silver,et al.  Transition from viscous to elastic-based dependency of mechanical properties of self-assembled type I collagen fibers , 2001 .

[54]  J. Orgel,et al.  The in situ conformation and axial location of the intermolecular cross-linked non-helical telopeptides of type I collagen. , 2000, Structure.

[55]  E. Eikenberry,et al.  An unusual collagen periodicity in skin. , 1980, Biochimica et biophysica acta.

[56]  U Ziese,et al.  Corneal collagen fibril structure in three dimensions: Structural insights into fibril assembly, mechanical properties, and tissue organization , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Glanville,et al.  Covalent crosslinking between molecules of type I and type III collagen. The involvement of the N-terminal, nonhelical regions of the alpha 1 (I) and alpha 1 (III) chains in the formation of intermolecular crosslinks. , 1982, European journal of biochemistry.

[58]  D. Birk,et al.  Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. , 2001, Micron.

[59]  F H Silver,et al.  Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[60]  D A Parry,et al.  The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. , 1988, Biophysical chemistry.

[61]  D. Eyre,et al.  Covalent Cross-linking of the NC1 Domain of Collagen Type IX to Collagen Type II in Cartilage* , 2004, Journal of Biological Chemistry.

[62]  D. Hulmes,et al.  Crystalline regions in collagen fibrils. , 1985, Journal of molecular biology.

[63]  H. Michna,et al.  Morphometric analysis of loading-induced changes in collagen-fibril populations in young tendons , 2004, Cell and Tissue Research.

[64]  P. Fratzl,et al.  Collagen packing and mineralization. An x-ray scattering investigation of turkey leg tendon. , 1993, Biophysical journal.

[65]  H. Gutfreund,et al.  Where do we go from here?: Principles of Enzyme Kinetics by Athel Cornish-Bowden, published by Butterworths, London. £12.- (206 pages) , 1976 .

[66]  Peter Fratzl,et al.  Cellulose and collagen: from fibres to tissues , 2003 .

[67]  F. Reinholt,et al.  Association of the Aggrecan Keratan Sulfate-rich Region with Collagen in Bovine Articular Cartilage* , 1999, The Journal of Biological Chemistry.

[68]  K. Kadler,et al.  Analysis of collagen fibril diameter distribution in connective tissues using small-angle X-ray scattering. , 2005, Biochimica et biophysica acta.

[69]  D. Hulmes,et al.  Tyrosine-rich acidic matrix protein (TRAMP) accelerates collagen fibril formation in vitro. , 1993, The Journal of biological chemistry.

[70]  C. A. Miles,et al.  The role of the alpha2 chain in the stabilization of the collagen type I heterotrimer: a study of the type I homotrimer in oim mouse tissues. , 2002, Journal of molecular biology.

[71]  M. Kobayashi,et al.  Association of type VI collagen with D-periodic collagen fibrils in developing tail tendons of mice. , 1997, Archives of histology and cytology.

[72]  Himadri S. Gupta,et al.  Structure and mechanical quality of the collagen–mineral nano-composite in bone , 2004 .

[73]  B. Olsen,et al.  FACIT collagens: diverse molecular bridges in extracellular matrices. , 1991, Trends in biochemical sciences.

[74]  M. E. van der Rest,et al.  Collagen family of proteins , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[75]  T. Irving,et al.  Microfibrillar structure of type I collagen in situ. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[76]  T. Wess,et al.  The variability in type I collagen helical pitch is reflected in the D periodic fibrillar structure. , 2007, Journal of molecular biology.

[77]  A. Miller,et al.  Crystalline three‐dimensional packing is a general characteristic of type I collagen fibrils , 1980, FEBS letters.

[78]  A. Pozzi,et al.  Endo180 Binds to the C-terminal Region of Type I Collagen* , 2005, Journal of Biological Chemistry.

[79]  D. Birk,et al.  Reduction of type V collagen using a dominant-negative strategy alters the regulation of fibrillogenesis and results in the loss of corneal- specific fibril morphology , 1996, The Journal of cell biology.

[80]  R. Iozzo,et al.  Decorin, epiphycan, and lumican genes are closely linked on murine Chromosome 10 and are deleted in lethal steel mutants , 1999, Mammalian Genome.

[81]  K A Derwin,et al.  Proteoglycans and glycosaminoglycan fine structure in the mouse tail tendon fascicle , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[82]  D. Birk,et al.  Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-terminal domain, a putative regulator of corneal fibrillogenesis , 1993, The Journal of cell biology.

[83]  Y. Imamura,et al.  The fibril structure of type V collagen triple-helical domain. , 2001, Micron.

[84]  B. Trus,et al.  Compressed microfibril models of the native collagen fibril , 1980, Nature.

[85]  P. Timmins,et al.  Interpretation of the low-angle meridional neutron diffraction patterns from collagen fibres in terms of the amino acid sequence , 1980 .

[86]  J. Petruska,et al.  Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule , 1963 .

[87]  D. Prockop,et al.  The collagen fibril: the almost crystalline structure. , 1998, Journal of structural biology.

[88]  F. Reinholt,et al.  Fibromodulin-null Mice Have Abnormal Collagen Fibrils, Tissue Organization, and Altered Lumican Deposition in Tendon* , 1999, The Journal of Biological Chemistry.

[89]  R. Burgeson New collagens, new concepts. , 1988, Annual review of cell biology.

[90]  John E. Scott,et al.  The structure of interfibrillar proteoglycan bridges (‘shape modules’) in extracellular matrix of fibrous connective tissues and their stability in various chemical environments , 1998, Journal of anatomy.

[91]  G W Blunn,et al.  Three-dimensional collagen architecture in bovine articular cartilage. , 1991, The Journal of bone and joint surgery. British volume.

[92]  J. Sanders,et al.  Collagen fibril diameters increase and fibril densities decrease in skin subjected to repetitive compressive and shear stresses. , 2001, Journal of biomechanics.

[93]  A. Hammersley,et al.  Type I collagen packing, conformation of the triclinic unit cell. , 1995, Journal of molecular biology.

[94]  E. Jones,et al.  Analysis of structural design features in collagen. , 1991, Journal of molecular biology.

[95]  D A Parry,et al.  A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[96]  K. Kadler,et al.  The 10+4 microfibril structure of thin cartilage fibrils , 2006, Proceedings of the National Academy of Sciences.

[97]  N. Schachar,et al.  Collagen fibril structure of normal, aging, and osteoarthritic cartilage , 1992, The Journal of pathology.

[98]  P. Bruckner,et al.  Macromolecular Specificity of Collagen Fibrillogenesis , 2003, Journal of Biological Chemistry.

[99]  N. Sasaki,et al.  Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. , 1996, Journal of biomechanics.

[100]  F. Vollrath,et al.  Biological liquid crystal elastomers. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[101]  L. Vaughan,et al.  Cartilage contains mixed fibrils of collagen types II, IX, and XI , 1989, The Journal of cell biology.

[102]  D. Birk,et al.  Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation , 1986, The Journal of cell biology.

[103]  D. Hulmes,et al.  Interpretation of the meridional X-ray diffraction pattern from collagen fibres in terms of the known amino acid sequence. , 1977, Journal of molecular biology.

[104]  Axel Ekani-Nkodo,et al.  Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner. , 2003, Biophysical journal.

[105]  P. Kannus Structure of the tendon connective tissue , 2000, Scandinavian journal of medicine & science in sports.

[106]  I. Alberts,et al.  Structure of type I and type III heterotypic collagen fibrils: an X-ray diffraction study. , 2002, Journal of structural biology.

[107]  B. Brodsky,et al.  Altered collagen structure in mouse tail tendon lacking the α2(I) chain , 1997 .

[108]  Allen J. Bailey,et al.  Molecular mechanisms of ageing in connective tissues , 2001, Mechanisms of Ageing and Development.

[109]  T. Ushiki,et al.  The subfibrillar arrangement of corneal and scleral collagen fibrils as revealed by scanning electron and atomic force microscopy. , 2000, Archives of histology and cytology.

[110]  I. Chervoneva,et al.  Type V Collagen Controls the Initiation of Collagen Fibril Assembly* , 2004, Journal of Biological Chemistry.

[111]  E. Baer,et al.  The multicomposite structure of tendon. , 1978, Connective tissue research.

[112]  M. Marko,et al.  Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. , 1996, Journal of structural biology.

[113]  H. Scheraga,et al.  Structure of the type I collagen molecule based on conformational energy computations: the triple-stranded helix and the N-terminal telopeptide. , 1995, Journal of molecular biology.

[114]  M Raspanti,et al.  Collagen structure and functional implications. , 2001, Micron.

[115]  Andrew D. Miller,et al.  Calculated X-ray diffraction pattern from a quasi-hexagonal model for the molecular arrangement in collagen , 1981 .

[116]  V. McKusick,et al.  Patients with Ehlers-Danlos syndrome type IV lack type III collagen. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Mhj Koch,et al.  Quantitative analysis of the molecular sliding mechanisms in native tendon collagen — time-resolved dynamic studies using synchrotron radiation , 1987 .

[118]  S. Bernocco,et al.  Control of Heterotypic Fibril Formation by Collagen V Is Determined by Chain Stoichiometry* , 2001, The Journal of Biological Chemistry.

[119]  A. George,et al.  Type I collagen N‐Telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis* , 2003, Proteins.

[120]  D. Parry,et al.  An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age. , 1989, Connective tissue research.

[121]  Terry Magnuson,et al.  Lumican Regulates Collagen Fibril Assembly: Skin Fragility and Corneal Opacity in the Absence of Lumican , 1998, The Journal of cell biology.

[122]  D J Prockop,et al.  Radial packing, order, and disorder in collagen fibrils. , 1995, Biophysical journal.

[123]  T. Ludwig,et al.  Molecular structure and interaction of recombinant human type XVI collagen. , 2004, Journal of molecular biology.

[124]  D A Parry,et al.  Analysis of the primary structure of collagen for the origins of molecular packing. , 1973, Journal of molecular biology.

[125]  P. Bishop Structural macromolecules and supramolecular organisation of the vitreous gel , 2000, Progress in Retinal and Eye Research.

[126]  J. Revel,et al.  Subfibrillar structure of type I collagen observed by atomic force microscopy. , 1993, Biophysical journal.

[127]  A. Hammersley,et al.  A consensus model for molecular packing of type I collagen. , 1998, Journal of structural biology.