Filter-based ultralow-frequency Raman measurement down to 2 cm-1 for fast Brillouin spectroscopy measurement.

Simultaneous Stokes and anti-Stokes ultralow-frequency (ULF) Raman measurement down to ∼2 cm-1 or 60 GHz is realized by a single-stage spectrometer in combination with volume-Bragg-grating-based notch filters. This system reveals its excellent performance by probing Brillouin signal of acoustic phonons in silicon, germanium, gallium arsenide, and gallium nitride. The deduced sound velocity and elastic constants are in good accordance with previous results determined by various methods. This system can shorten the integration time of the Brillouin signal with a good signal-to-noise ratio by more than 2000-fold compared to a Fabry-Perot interferometer (FPI). This study shows how a filter-based ULF Raman system can be used to reliably achieve Brillouin spectroscopy for condensed materials with high sensitivity and high signal-to-noise ratio, stimulating fast Brillouin spectrum measurements to probe acoustic phonons in semiconductors.

[1]  Maris,et al.  Study of phonon dispersion in silicon and germanium at long wavelengths using picosecond ultrasonics , 2000, Physical review letters.

[2]  M. Krisch,et al.  Phonon dispersion of graphite by inelastic x-ray scattering , 2007, 0705.2418.

[3]  H. Ogi,et al.  Elastic constants of GaN between 10 and 305 K , 2016 .

[4]  M. Dresselhaus,et al.  Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2. , 2016, Nano letters.

[5]  Y. Wang,et al.  The shear mode of multilayer graphene. , 2011, Nature materials.

[6]  G. Shirane,et al.  Inelastic-neutron-scattering study of acoustic phonons in Nb$sub 3$Sn , 1973 .

[7]  S. Nakamura,et al.  BRILLOUIN SCATTERING STUDY OF BULK GAN , 1999 .

[8]  Acoustic mode dispersion at hypersonic frequencies in GaAs , 2000 .

[9]  Andrea C. Ferrari,et al.  Resonant Raman spectroscopy of twisted multilayer graphene , 2014, Nature Communications.

[10]  Wanci Shen,et al.  Polarization properties, high-order Raman spectra, and frequency asymmetry between Stokes and anti-Stokes scattering of Raman modes in a graphite whisker , 2001 .

[11]  Wei Ji,et al.  Interface Coupling in Twisted Multilayer Graphene by Resonant Raman Spectroscopy of Layer Breathing Modes. , 2015, ACS nano.

[12]  Zhaokai Meng,et al.  Precise Determination of Brillouin Scattering Spectrum Using a Virtually Imaged Phase Array (VIPA) Spectrometer and Charge-Coupled Device (CCD) Camera , 2016, Applied spectroscopy.

[13]  A. Ferrari,et al.  Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 , 2012, 1212.6796.

[14]  M. Dresselhaus,et al.  Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. , 2015, Nano letters.

[15]  A. A. Studna,et al.  Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV , 1983 .

[16]  Y. Wang,et al.  The shear mode of multi-layer graphene , 2011 .

[17]  A. Polian Brillouin scattering at high pressure: an overview , 2003 .

[18]  Carl Paterson,et al.  Spectral broadening in Brillouin imaging , 2013 .

[19]  R. Vacher,et al.  Brillouin Scattering: A Tool for the Measurement of Elastic and Photoelastic Constants , 1972 .

[20]  R. Souda,et al.  Surface phonon dispersion curves of graphite (0001) over the entire energy region , 1988 .

[21]  Dominique Bougeard,et al.  Raman scattering of folded acoustic phonons in self-assembled Si/Ge dot superlattices , 2004 .

[22]  A. G. Every,et al.  Determination of the dispersive elastic constants of the cubic crystals Ge, Si, GaAs, and InSb , 2008 .

[23]  S. Pantelides,et al.  Rapid and Nondestructive Identification of Polytypism and Stacking Sequences in Few‐Layer Molybdenum Diselenide by Raman Spectroscopy , 2015, Advanced materials.

[24]  J. Sandercock Brillouin-Scattering Measurements on Silicon and Germanium , 1972 .

[25]  A. Jayaraman,et al.  Elastic Moduli of GaAs at Moderate Pressures and the Evaluation of Compression to 250 kbar , 1967 .

[26]  Fujii,et al.  Raman scattering from acoustic phonons confined in Si nanocrystals. , 1996, Physical review. B, Condensed matter.

[27]  B. Sumpter,et al.  Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. , 2015, ACS nano.

[28]  G. Dresselhaus,et al.  Light scattering lineshape in opaque materials , 1975 .

[29]  John J. Hall,et al.  Electronic Effects in the Elastic Constants of n -Type Silicon , 1967 .

[30]  Prashanth C. Upadhya,et al.  Temperature-dependent low-frequency vibrational spectra of purine and adenine , 2003 .

[31]  H. J. Mcskimin,et al.  Elastic Moduli of Silicon vs Hydrostatic Pressure at 25.0°C and − 195.8°C , 1964 .

[32]  X. Qiao,et al.  Ultralow-frequency Raman system down to 10 cm(-1) with longpass edge filters and its application to the interface coupling in t(2+2)LGs. , 2016, The Review of scientific instruments.

[33]  D. Aspnes,et al.  Spectroscopic Analysis of the Interface Between Si and Its Thermally Grown Oxide , 1980 .

[34]  Brian C. Smith,et al.  Polymorph Characterization of Active Pharmaceutical Ingredients (APIs) Using Low-Frequency Raman Spectroscopy , 2014, Applied spectroscopy.

[35]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[36]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[37]  Alan Francis Wright,et al.  Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN , 1997 .

[38]  P. Taday,et al.  Understanding the influence of polymorphism on phonon spectra: lattice dynamics calculations and terahertz spectroscopy of carbamazepine. , 2006, The journal of physical chemistry. B.

[39]  R. Frost Fourier Transform Raman Spectroscopy of Kaolinite, Dickite and Halloysite , 1995 .

[40]  Popovic,et al.  Folded acoustic phonons in GaAs/AlAs corrugated superlattices grown along the , 1993, Physical review. B, Condensed matter.

[41]  Rui He,et al.  Observation of interlayer phonon modes in van der Waals heterostructures , 2014, 1410.4224.

[42]  D. Aspnes,et al.  A NEW RESONANT ELLIPSOMETRIC TECHNIQUE FOR CHARACTERIZING THE INTERFACE BETWEEN GaAs AND ITS PLASMA-GROWN OXIDE. , 1978 .

[43]  S. Yun,et al.  Confocal Brillouin microscopy for three-dimensional mechanical imaging. , 2007, Nature photonics.

[44]  R. Loudon,et al.  The Raman effect in crystals , 1964 .

[45]  A. K. Ramdas,et al.  Brillouin scattering in diamond , 1975 .

[46]  Jaesung Park,et al.  Anomalous excitonic resonance Raman effects in few-layered MoS2. , 2015, Nanoscale.

[47]  Shunro Fuke,et al.  Optical properties of hexagonal GaN , 1997 .

[48]  S. Nakamura,et al.  Brillouin scattering study of gallium nitride: elastic stiffness constants , 1997 .