RELATIVE CATEGORICITY AND ABSTRACTION PRINCIPLES

Many recent writers in the philosophy of mathematics have put great weight on the relative categoricity of the traditional axiomatizations of our foundational theories of arithmetic and set theory (\cite{Parsons1990a}, \cite{Parsons2008} \S{49}, \cite{McGee1997aa}, \cite{Lavine1999aa}, \cite{Vaananen2014aa}). Another great enterprise in contemporary philosophy of mathematics has been Wright's and Hale's project of founding mathematics on abstraction principles (\cite{Hale2001}, \cite{Cook2007aa}). In \cite{Walsh2012aa}, it was noted that one traditional abstraction principle, namely Hume's Principle, had a certain relative categoricity property, which here we term \emph{natural relative categoricity}. In this paper, we show that most other abstraction principles are \emph{not} naturally relatively categorical, so that there is in fact a large amount of incompatibility between these two recent trends in contemporary philosophy of mathematics. To better understand the precise demands of relative categoricity in the context of abstraction principles, we compare and contrast these constraints to (i) stability-like acceptability criteria on abstraction principles (cf. \cite{Cook2012aa}), (ii) the Tarski-Sher logicality requirements on abstraction principles studied by Antonelli \cite{Antonelli2010aa} and Fine~\cite{Fine2002}, and (iii) supervaluational ideas coming out of Hodes' work \cite{Hodes1984, Hodes1990aa, Hodes1991}.

[1]  Jon Barwise,et al.  Model-Theoretic Logics , 2016 .

[2]  J. L. Austin,et al.  The foundations of arithmetic : a logico-mathematical enquiry into the concept of number , 1951 .

[3]  Paul Boghossian,et al.  Content and Self-Knowledge , 1989 .

[4]  Christopher Peacocke,et al.  New essays on the a priori , 2000 .

[5]  María Manzano,et al.  Extensions of First-Order Logic , 1996 .

[6]  Harold T. Hodes Where do the natural numbers come from? , 1990, Synthese.

[7]  Lawrence S. Moss,et al.  Generalized quantifiers and the expres-sive power of natural language , 1985 .

[8]  Harold T. Hodes Logicism and the Ontological Commitments of Arithmetic , 1984 .

[9]  G. Boolos Meaning and Method: Essays in Honor of Hilary Putnam , 2009 .

[10]  Harold T. Hodes Where Do Sets Come From? , 1991, J. Symb. Log..

[12]  J. MacFarlane Frege, Kant, and the Logic in Logicism , 2002 .

[13]  Crispin Wright,et al.  Is Hume's Principle Analytic? , 1999, Notre Dame J. Formal Log..

[14]  G. Aldo Antonelli,et al.  Notions of Invariance for Abstraction Principles , 2010 .

[15]  C. Wright On the Harmless Impredicativity of N= (Hume's Principle) , 2001 .

[16]  Tamar Szabó Gendler,et al.  Oxford Studies in Epistemology , 2005 .

[17]  S. Shapiro Philosophy of mathematics : structure and ontology , 1997 .

[18]  Gabriel Uzquiano,et al.  Well- and Non-Well-Founded Fregean Extensions , 2004, J. Philos. Log..

[19]  Richard G. Heck On The Consistency of Second-Order Contextual Definitions , 1992 .

[20]  J. Barwise,et al.  Extended Logics: The General Framework , 2016 .

[21]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[22]  Stewart Shapiro,et al.  The Oxford Handbook of Philosophy of Mathematics and Logic , 2005, Oxford handbooks in philosophy.

[23]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[24]  O. Spies Die grundlagen der arithmetik: by G. Frege. English translation by J. L. Austin. 119 pages, 14 × 22 cm. Breslau, Verlag von Wilhelm Koebner, 1884, and New York, Philosophical Library, 1950. Price, $4.75 , 1950 .

[25]  Sean Walsh,et al.  LOGICISM, INTERPRETABILITY, AND KNOWLEDGE OF ARITHMETIC , 2014, The Review of Symbolic Logic.

[26]  Sean Walsh,et al.  Comparing Peano arithmetic, Basic Law V, and Hume's Principle , 2012, Ann. Pure Appl. Log..

[27]  D. Marker Model theory : an introduction , 2002 .

[28]  Karel Hrbacek,et al.  Introduction to Set Theory , 1978 .

[29]  B. Hale,et al.  Implicit definition and the a priori , 2000 .

[30]  Leon Horsten,et al.  The Continuum Companion to Philosophical Logic , 2011 .

[31]  Vann McGee,et al.  How We Learn Mathematical Language , 1997 .

[32]  A. Tarski,et al.  What are logical notions , 1986 .

[33]  Gila Sher,et al.  The Bounds of Logic: A Generalized Viewpoint , 1991 .

[34]  J. Benthem,et al.  Generalized Quantifiers in Natural Language , 1985 .

[35]  Roy T. Cook,et al.  The Arché Papers on the Mathematics of Abstraction , 2007 .

[36]  George Boolos,et al.  Logic, Logic, and Logic , 2000 .

[37]  Gian Aldo Antonelli,et al.  Numerical Abstraction via the Frege Quantifier , 2010, Notre Dame J. Formal Log..

[38]  Roy T. Cook,et al.  The limits of abstraction , 2004 .

[39]  Peter F. Smith,et al.  Mathematical Thought and its Objects , 2009 .

[40]  Michael Beaney,et al.  Frege's philosophy of mathematics , 2005 .

[41]  Stewart Shapiro,et al.  New V, ZF, and Abstraction , 1999 .

[42]  Tong Wang,et al.  Internal Categoricity in Arithmetic and Set Theory , 2015, Notre Dame J. Formal Log..

[43]  G. Aldo Antonelli The Nature and Purpose of Numbers , 2010 .

[44]  S. Shapiro,et al.  Foundations Without Foundationalism: A Case for Second-Order Logic. , 1994 .

[45]  Bob Hale,et al.  The Reason's Proper Study , 2001 .

[46]  Richard G. Heck Language, thought, and logic : essays in honour of Michael Dummett , 1997 .

[47]  C. Wright On the Philosophical Significance of Frege's Theorem , 2001 .

[48]  Crispin Wright Frege's conception of numbers as objects , 1983 .

[49]  Stanley Peters,et al.  Quantifiers in language and logic , 2006 .

[50]  Crispin Wright,et al.  Frege's conception of numbers as objects , 1984 .

[51]  György Darvas,et al.  Philosophy of mathematics today , 1997 .

[52]  Tim Button,et al.  Ideas and Results in Model Theory: Reference, Realism, Structure and Categoricity , 2015 .

[53]  Roy T. Cook,et al.  Conservativeness, Stability, and Abstraction , 2012, The British Journal for the Philosophy of Science.