RELATIVE CATEGORICITY AND ABSTRACTION PRINCIPLES
暂无分享,去创建一个
[1] Jon Barwise,et al. Model-Theoretic Logics , 2016 .
[2] J. L. Austin,et al. The foundations of arithmetic : a logico-mathematical enquiry into the concept of number , 1951 .
[3] Paul Boghossian,et al. Content and Self-Knowledge , 1989 .
[4] Christopher Peacocke,et al. New essays on the a priori , 2000 .
[5] María Manzano,et al. Extensions of First-Order Logic , 1996 .
[6] Harold T. Hodes. Where do the natural numbers come from? , 1990, Synthese.
[7] Lawrence S. Moss,et al. Generalized quantifiers and the expres-sive power of natural language , 1985 .
[8] Harold T. Hodes. Logicism and the Ontological Commitments of Arithmetic , 1984 .
[9] G. Boolos. Meaning and Method: Essays in Honor of Hilary Putnam , 2009 .
[10] Harold T. Hodes. Where Do Sets Come From? , 1991, J. Symb. Log..
[12] J. MacFarlane. Frege, Kant, and the Logic in Logicism , 2002 .
[13] Crispin Wright,et al. Is Hume's Principle Analytic? , 1999, Notre Dame J. Formal Log..
[14] G. Aldo Antonelli,et al. Notions of Invariance for Abstraction Principles , 2010 .
[15] C. Wright. On the Harmless Impredicativity of N= (Hume's Principle) , 2001 .
[16] Tamar Szabó Gendler,et al. Oxford Studies in Epistemology , 2005 .
[17] S. Shapiro. Philosophy of mathematics : structure and ontology , 1997 .
[18] Gabriel Uzquiano,et al. Well- and Non-Well-Founded Fregean Extensions , 2004, J. Philos. Log..
[19] Richard G. Heck. On The Consistency of Second-Order Contextual Definitions , 1992 .
[20] J. Barwise,et al. Extended Logics: The General Framework , 2016 .
[21] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .
[22] Stewart Shapiro,et al. The Oxford Handbook of Philosophy of Mathematics and Logic , 2005, Oxford handbooks in philosophy.
[23] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[24] O. Spies. Die grundlagen der arithmetik: by G. Frege. English translation by J. L. Austin. 119 pages, 14 × 22 cm. Breslau, Verlag von Wilhelm Koebner, 1884, and New York, Philosophical Library, 1950. Price, $4.75 , 1950 .
[25] Sean Walsh,et al. LOGICISM, INTERPRETABILITY, AND KNOWLEDGE OF ARITHMETIC , 2014, The Review of Symbolic Logic.
[26] Sean Walsh,et al. Comparing Peano arithmetic, Basic Law V, and Hume's Principle , 2012, Ann. Pure Appl. Log..
[27] D. Marker. Model theory : an introduction , 2002 .
[28] Karel Hrbacek,et al. Introduction to Set Theory , 1978 .
[29] B. Hale,et al. Implicit definition and the a priori , 2000 .
[30] Leon Horsten,et al. The Continuum Companion to Philosophical Logic , 2011 .
[31] Vann McGee,et al. How We Learn Mathematical Language , 1997 .
[32] A. Tarski,et al. What are logical notions , 1986 .
[33] Gila Sher,et al. The Bounds of Logic: A Generalized Viewpoint , 1991 .
[34] J. Benthem,et al. Generalized Quantifiers in Natural Language , 1985 .
[35] Roy T. Cook,et al. The Arché Papers on the Mathematics of Abstraction , 2007 .
[36] George Boolos,et al. Logic, Logic, and Logic , 2000 .
[37] Gian Aldo Antonelli,et al. Numerical Abstraction via the Frege Quantifier , 2010, Notre Dame J. Formal Log..
[38] Roy T. Cook,et al. The limits of abstraction , 2004 .
[39] Peter F. Smith,et al. Mathematical Thought and its Objects , 2009 .
[40] Michael Beaney,et al. Frege's philosophy of mathematics , 2005 .
[41] Stewart Shapiro,et al. New V, ZF, and Abstraction , 1999 .
[42] Tong Wang,et al. Internal Categoricity in Arithmetic and Set Theory , 2015, Notre Dame J. Formal Log..
[43] G. Aldo Antonelli. The Nature and Purpose of Numbers , 2010 .
[44] S. Shapiro,et al. Foundations Without Foundationalism: A Case for Second-Order Logic. , 1994 .
[45] Bob Hale,et al. The Reason's Proper Study , 2001 .
[46] Richard G. Heck. Language, thought, and logic : essays in honour of Michael Dummett , 1997 .
[47] C. Wright. On the Philosophical Significance of Frege's Theorem , 2001 .
[48] Crispin Wright. Frege's conception of numbers as objects , 1983 .
[49] Stanley Peters,et al. Quantifiers in language and logic , 2006 .
[50] Crispin Wright,et al. Frege's conception of numbers as objects , 1984 .
[51] György Darvas,et al. Philosophy of mathematics today , 1997 .
[52] Tim Button,et al. Ideas and Results in Model Theory: Reference, Realism, Structure and Categoricity , 2015 .
[53] Roy T. Cook,et al. Conservativeness, Stability, and Abstraction , 2012, The British Journal for the Philosophy of Science.