Gradient structures and geodesic convexity for reaction–diffusion systems

We consider systems of reaction–diffusion equations as gradient systems with respect to an entropy functional and a dissipation metric given in terms of a so-called Onsager operator, which is a sum of a diffusion part of Wasserstein type and a reaction part. We provide methods for establishing geodesic λ-convexity of the entropy functional by purely differential methods, thus circumventing arguments from mass transportation. Finally, several examples, including a drift–diffusion system, provide a survey on the applicability of the theory.

[1]  Felix Otto,et al.  Dynamics of Labyrinthine Pattern Formation in Magnetic Fluids: A Mean‐Field Theory , 1998 .

[2]  Jos'e Antonio Carrillo,et al.  Nonlinear mobility continuity equations and generalized displacement convexity , 2009, 0901.3978.

[3]  L. Desvillettes,et al.  Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations , 2006 .

[4]  Laurent Desvillettes,et al.  Global Existence for Quadratic Systems of Reaction-Diffusion , 2007 .

[5]  Alexander Mielke,et al.  Formulation of thermoelastic dissipative material behavior using GENERIC , 2011 .

[6]  Nicola Gigli,et al.  A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions , 2010 .

[7]  H. Gajewski,et al.  Thermodynamic design of energy models of semiconductor devices , 2002 .

[8]  Daniel Matthes,et al.  Cahn–Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics , 2012, 1201.2367.

[9]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.

[10]  Klaus Gärtner,et al.  On a nonlocal model of image segmentation , 2005 .

[11]  Felix Otto,et al.  Eulerian Calculus for the Contraction in the Wasserstein Distance , 2005, SIAM J. Math. Anal..

[12]  Annegret Glitzky Exponential decay of the free energy for discretized electro-reaction-diffusion systems , 2008 .

[13]  Sara Daneri,et al.  Lecture notes on gradient flows and optimal transport , 2010, Optimal Transport.

[14]  S. Lisini Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces , 2009 .

[15]  Barry F. Knerr,et al.  The porous medium equation in one dimension , 1977 .

[16]  Annegret Glitzky,et al.  Global Existence Result for Pair Diffusion Models , 2005, SIAM J. Math. Anal..

[17]  Martin Burger,et al.  Nonlinear Cross-Diffusion with Size Exclusion , 2010, SIAM J. Math. Anal..

[18]  Sara Daneri,et al.  Eulerian Calculus for the Displacement Convexity in the Wasserstein Distance , 2008, SIAM J. Math. Anal..

[19]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[20]  Alexander Mielke,et al.  An Approach to Nonlinear Viscoelasticity via Metric Gradient Flows , 2013, SIAM J. Math. Anal..

[21]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[22]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[23]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[24]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[25]  J. Griepentrog On the unique solvability of a nonlocal phase separation problem for multicomponent systems , 2004 .

[26]  C. Villani Optimal Transport: Old and New , 2008 .

[27]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[28]  L. Desvillettes Entropy Methods for Reaction-Diffusion Equations with Degenerate Diffusion Arising in Reversible Chemistry∗ , 2007 .

[29]  Giuseppe Savaré,et al.  The Wasserstein Gradient Flow of the Fisher Information and the Quantum Drift-diffusion Equation , 2009 .

[30]  Herbert Amann,et al.  Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value Problems , 1993 .

[31]  Annegret Glitzky Energy estimates for electro-reaction-diffusion systems with partly fast kinetics , 2007 .

[32]  Moh’d A. Al-Nimr,et al.  Non-equilibrium thermodynamics of heterogeneous systems , 2010 .

[33]  Dieter Bothe,et al.  The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction , 2011 .

[34]  David A. Lavis,et al.  Mean-Field Theory , 2015 .

[35]  Alexander Mielke,et al.  Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions , 2012 .

[36]  Annegret Glitzky,et al.  A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces , 2012 .

[37]  D. Bakry L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .

[38]  L. Desvillettes,et al.  ENTROPY METHODS FOR REACTION-DIFFUSION SYSTEMS , 2007 .

[39]  J. Vázquez The Porous Medium Equation , 2006 .

[40]  Marc Massot,et al.  Entropic structure of multicomponent reactive flows with partial equilibrium reduced chemistry , 2004 .

[41]  Alexander Mielke,et al.  A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems , 2011 .

[42]  Peter A. Markowich,et al.  On Uniform Decay of the Entropy for Reaction–Diffusion Systems , 2013 .

[43]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[44]  Klaus Gärtner,et al.  Energy estimates for continuous and discretized electro-reaction-diffusion systems , 2008 .

[45]  L. Ambrosio,et al.  A gradient flow approach to an evolution problem arising in superconductivity , 2008 .

[46]  J. Maas,et al.  Ricci Curvature of Finite Markov Chains via Convexity of the Entropy , 2011, 1111.2687.

[47]  L. Desvillettes,et al.  Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds , 2008 .

[48]  R. McCann,et al.  A Family of Nonlinear Fourth Order Equations of Gradient Flow Type , 2009, 0901.0540.

[49]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[50]  A. Mielke Geodesic convexity of the relative entropy in reversible Markov chains , 2013 .

[51]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.