Cyclic AMP-binding protein Epac1 acts as a metabolic sensor to promote cardiomyocyte lipotoxicity

[1]  Liuyi Dong,et al.  Vitexin Mitigates Myocardial Ischemia/Reperfusion Injury in Rats by Regulating Mitochondrial Dysfunction via Epac1-Rap1 Signaling , 2021, Oxidative medicine and cellular longevity.

[2]  Yun-Wei A Hsu,et al.  Increasing Fatty Acid Oxidation Prevents High-Fat Diet–Induced Cardiomyopathy Through Regulating Parkin-Mediated Mitophagy , 2020, Circulation.

[3]  S. Fusco,et al.  Nutrient-Dependent Changes of Protein Palmitoylation: Impact on Nuclear Enzymes and Regulation of Gene Expression , 2018, International journal of molecular sciences.

[4]  Y. Ladilov,et al.  Functional Significance of the Adcy10-Dependent Intracellular cAMP Compartments , 2018, Journal of cardiovascular development and disease.

[5]  Xiaodong Cheng,et al.  Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. , 2018, Physiological reviews.

[6]  J. Sowers,et al.  Diabetic Cardiomyopathy: An Update of Mechanisms Contributing to This Clinical Entity , 2018, Circulation research.

[7]  F. Lezoualc’h,et al.  Epac Function and cAMP Scaffolds in the Heart and Lung , 2018, Journal of cardiovascular development and disease.

[8]  T. Sharp,et al.  Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission , 2018, Circulation research.

[9]  M. Frenneaux,et al.  Cardiac metabolism — A promising therapeutic target for heart failure , 2017, Pharmacology & therapeutics.

[10]  He Huang,et al.  Role of CaMKII in free fatty acid/hyperlipidemia-induced cardiac remodeling both in vitro and in vivo. , 2017, Journal of molecular and cellular cardiology.

[11]  G. Di Benedetto,et al.  Shaping mitochondrial dynamics: The role of cAMP signalling. , 2017, Biochemical and biophysical research communications.

[12]  D. Cooper,et al.  Adenylyl cyclase signalling complexes – Pharmacological challenges and opportunities , 2017, Pharmacology & therapeutics.

[13]  F. Lezoualc’h,et al.  Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death , 2017, Circulation research.

[14]  Xiaodong Cheng,et al.  Inhibition of Epac1 suppresses mitochondrial fission and reduces neointima formation induced by vascular injury , 2016, Scientific Reports.

[15]  Y. Huang,et al.  Cardiac‐specific down‐regulation of carnitine palmitoyltransferase‐1b (CPT‐1b) prevents cardiac remodeling in obese mice , 2016, Obesity.

[16]  G. Lopaschuk,et al.  Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. , 2016, Biochimica et biophysica acta.

[17]  J. Dyck,et al.  The role of CD36 in the regulation of myocardial lipid metabolism. , 2016, Biochimica et biophysica acta.

[18]  K. Gopal,et al.  Lipotoxicity in obesity and diabetes-related cardiac dysfunction. , 2016, Biochimica et biophysica acta.

[19]  A. Hudmon,et al.  Cardiac sodium channel palmitoylation regulates channel availability and myocyte excitability with implications for arrhythmia generation , 2016, Nature Communications.

[20]  Liping Zhang,et al.  Mitochondrial cAMP signaling , 2016, Cellular and Molecular Life Sciences.

[21]  R. Fischmeister,et al.  A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death , 2016, Cell Death and Disease.

[22]  D. Hilgemann,et al.  S-palmitoylation and the regulation of NCX1 , 2016, Channels.

[23]  M. E. Oliva,et al.  Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats , 2016, Journal of clinical medicine.

[24]  K. Humphries,et al.  cAMP-dependent Protein Kinase (PKA) Signaling Is Impaired in the Diabetic Heart* , 2015, The Journal of Biological Chemistry.

[25]  M. Murray,et al.  Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer's disease. , 2015, Human molecular genetics.

[26]  C. Steegborn Structure, mechanism, and regulation of soluble adenylyl cyclases - similarities and differences to transmembrane adenylyl cyclases. , 2014, Biochimica et biophysica acta.

[27]  J. Stamler,et al.  Regulation of the Skeletal Muscle Ryanodine Receptor/Ca2+-release Channel RyR1 by S-Palmitoylation* , 2014, The Journal of Biological Chemistry.

[28]  T. Pozzan,et al.  Mitochondrial Ca²⁺ uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. , 2013, Cell metabolism.

[29]  J. Jordan,et al.  Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. , 2012, Journal of Clinical Investigation.

[30]  F. Lezoualc’h,et al.  Identification of a Tetrahydroquinoline Analog as a Pharmacological Inhibitor of the cAMP-binding Protein Epac* , 2012, The Journal of Biological Chemistry.

[31]  P. Schulze,et al.  Lipid metabolism and toxicity in the heart. , 2012, Cell metabolism.

[32]  H. Ke,et al.  Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases , 2012, Cell.

[33]  Domenico L Gatti,et al.  Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. , 2011, Cell metabolism.

[34]  R. Liao,et al.  Increased Glucose Uptake and Oxidation in Mouse Hearts Prevent High Fatty Acid Oxidation but Cause Cardiac Dysfunction in Diet-Induced Obesity , 2009, Circulation.

[35]  R. Acín-Pérez,et al.  Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. , 2009, Cell metabolism.

[36]  J. Bos,et al.  8‐pCPT‐2′‐O‐Me‐cAMP‐AM: An Improved Epac‐Selective cAMP Analogue , 2008, Chembiochem : a European journal of chemical biology.

[37]  Mario J. Garcia,et al.  Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. , 2008, The American journal of medicine.

[38]  A. Bailey,et al.  Palmitoylated proteins: purification and identification , 2007, Nature Protocols.

[39]  F. Lezoualc’h,et al.  cAMP-Binding Protein Epac Induces Cardiomyocyte Hypertrophy , 2005, Circulation research.

[40]  Anne-MarieLompré,et al.  cAMP-Binding Protein Epac Induces Cardiomyocyte Hypertrophy , 2005 .

[41]  J. Beavo,et al.  Cyclic nucleotide research — still expanding after half a century , 2002, Nature Reviews Molecular Cell Biology.

[42]  L. Buja,et al.  A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. , 2000, American journal of physiology. Heart and circulatory physiology.

[43]  A M Graybiel,et al.  A family of cAMP-binding proteins that directly activate Rap1. , 1998, Science.

[44]  A. Wittinghofer,et al.  Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP , 1998, Nature.

[45]  H. Sabbah,et al.  Beta-receptor blockade decreases carnitine palmitoyl transferase I activity in dogs with heart failure. , 1998, Journal of cardiac failure.

[46]  F. Lezoualc’h,et al.  Exchange protein directly activated by cAMP 1 promotes autophagy during cardiomyocyte hypertrophy. , 2015, Cardiovascular research.

[47]  C. Folmes,et al.  Myocardial fatty acid metabolism in health and disease. , 2010, Physiological reviews.