Gold‐Mediated Exfoliation of Ultralarge Optoelectronically‐Perfect Monolayers

Gold-mediated exfoliation of ultralarge optoelectronically perfect monolayers with lateral dimensions up to ≈500 μm is reported. Electrical, optical, and X-ray photo-electron spectroscopy characterization show that the quality of the gold-exfoliated flakes is similar to that of tape-exfoliated flakes. Large-area flakes allow manufacturing of large-area mono-layer transition metal dichalcogenide electronics.

[1]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[2]  G. Eda,et al.  An innovative way of etching MoS2: Characterization and mechanistic investigation , 2013, Nano Research.

[3]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[4]  W. Andreoni,et al.  Thiols and Disulfides on the Au(111) Surface: The Headgroup−Gold Interaction , 2000 .

[5]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[6]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[7]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[8]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[9]  C. Hu,et al.  Field-effect transistors built from all two-dimensional material components. , 2014, ACS nano.

[10]  Hongsik Park,et al.  Layer-Resolved Graphene Transfer via Engineered Strain Layers , 2013, Science.

[11]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[12]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[13]  Lain‐Jong Li,et al.  Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. , 2012, ACS nano.

[14]  Yuping Zeng,et al.  High-gain inverters based on WSe2 complementary field-effect transistors. , 2014, ACS nano.

[15]  L. Tapasztó,et al.  Exfoliation of large-area transition metal chalcogenide single layers , 2015, Scientific Reports.

[16]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[17]  C. Battaglia,et al.  Strain-induced indirect to direct bandgap transition in multilayer WSe2. , 2014, Nano letters.

[18]  Evangelina Pensa,et al.  The chemistry of the sulfur-gold interface: in search of a unified model. , 2012, Accounts of chemical research.

[19]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[20]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[21]  E. Haller,et al.  Compliant substrate epitaxy: Au on MoS 2 , 2015, 1505.07505.

[22]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[23]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[24]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[25]  Dirk Englund,et al.  Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials. , 2015, ACS nano.