Polarized plasmonic enhancement by Au nanostructures probed through Raman scattering of suspended graphene.

We characterize plasmonic enhancement in a hotspot between two Au nanodisks using Raman scattering of graphene. Single layer graphene is suspended across the dimer cavity and provides an ideal two-dimensional test material for the local near-field distribution. We detect a Raman enhancement of the order of 10(3) originating from the cavity. Spatially resolved Raman measurements reveal a near-field localization one order of magnitude smaller than the wavelength of the excitation, which can be turned off by rotating the polarization of the excitation. The suspended graphene is under tensile strain. The resulting phonon mode softening allows for a clear identification of the enhanced signal compared to unperturbed graphene.

[1]  Hugen Yan,et al.  Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[2]  J. Hone,et al.  Probing strain-induced electronic structure change in graphene by Raman spectroscopy. , 2010, Nano letters.

[3]  Dirk Englund,et al.  Strong enhancement of light-matter interaction in graphene coupled to a photonic crystal nanocavity. , 2012, Nano letters.

[4]  S. Reich,et al.  Absolute Raman matrix elements of graphene and graphite , 2010 .

[5]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[6]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[7]  C. Geddes,et al.  Plasmonics , 2018, An Introduction to Metamaterials and Nanophotonics.

[8]  T. Ando Anomaly of Optical Phonon in Monolayer Graphene , 2006 .

[9]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[10]  Yihong Wu,et al.  Interference enhancement of Raman signal of graphene , 2008, 0801.4595.

[11]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[12]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[13]  K. Novoselov,et al.  Rayleigh imaging of graphene and graphene layers. , 2007, Nano letters.

[14]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[15]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[16]  K. Novoselov,et al.  Raman spectroscopy of graphene and bilayer under biaxial strain: bubbles and balloons. , 2012, Nano letters.

[17]  Dau-Sing Y. Wang,et al.  Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. , 1980, Applied optics.

[18]  Peter Nordlander,et al.  Graphene-antenna sandwich photodetector. , 2012, Nano letters.

[19]  D. Yoon,et al.  Strain-dependent splitting of the double-resonance Raman scattering band in graphene. , 2011, Physical review letters.

[20]  Cinzia Casiraghi,et al.  Probing the nature of defects in graphene by Raman spectroscopy. , 2012, Nano letters.

[21]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[22]  K. Novoselov,et al.  Strong plasmonic enhancement of photovoltage in graphene. , 2011, Nature communications.

[23]  S. Reich,et al.  Dominant phonon wave vectors and strain-induced splitting of the 2D Raman mode of graphene , 2011, 1102.5317.

[24]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[25]  Elefterios Lidorikis,et al.  Surface-enhanced Raman spectroscopy of graphene. , 2010, ACS nano.

[26]  Kazuhito Tsukagoshi,et al.  Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars , 2011, 1106.1507.

[27]  S. Reich,et al.  SHEAR STRAIN IN CARBON NANOTUBES UNDER HYDROSTATIC PRESSURE , 2000 .

[28]  Martin L Dunn,et al.  Ultrastrong adhesion of graphene membranes. , 2011, Nature nanotechnology.

[29]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[30]  M. Dunn,et al.  Adhesion mechanics of graphene membranes , 2012, 1205.0199.

[31]  Hai Zhu,et al.  Graphene-enabled silver nanoantenna sensors. , 2012, Nano letters.

[32]  B. Park,et al.  Interference effect on Raman spectrum of graphene on SiO 2 / Si , 2009, 0908.4322.

[33]  John Parthenios,et al.  Raman 2D-band splitting in graphene: theory and experiment. , 2011, ACS nano.

[34]  Yannick Sonnefraud,et al.  Controlling light localization and light-matter interactions with nanoplasmonics. , 2010, Small.

[35]  M. Lazzeri,et al.  Nonadiabatic Kohn anomaly in a doped graphene monolayer. , 2006, Physical review letters.

[36]  Yahong Xie,et al.  Giant optical response from graphene--plasmonic system. , 2012, ACS nano.

[37]  A. Reina,et al.  Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. , 2009, Nano letters.

[38]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[39]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .