Hydrogen embrittlement and rock bolt stress corrosion cracking

Abstract This paper considers our recent research on rock bolt stress corrosion cracking (SCC) which studied the influence of metallurgy using a range of (1) existing rock bolt steels and (2) commercial steels. The chemical composition, mechanical properties and microstructures of these steels varied considerably. The aim is to understand this failure mechanism and in particular to apply the knowledge gained from the study of SCC and hydrogen embrittlement (HE) of steels. The resistance of 1008, X65, X70 and 4145H to SCC/HE was similar, an effect which could be hardly expected as these steels have different strengths, microstructures and H-trap distributions. Different steel microstructures (pearlitic–ferritic and tempered martensite) had similar resistance to SCC and HE in the most aggressive conditions (pH 2.1 and −1500 mV SCE ) and had the same dimple rupture fracture surface.

[1]  G. Song,et al.  Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium , 2008 .

[2]  S. Ramamurthy,et al.  Linearly increasing stress test (LIST) for SCC research , 1993 .

[3]  Andrej Atrens,et al.  Boundary characterisation of X65 pipeline steel using analytical electron microscopy , 1999 .

[4]  Bhushan Lal Karihaloo,et al.  Comprehensive structural integrity , 2003 .

[5]  G. Song,et al.  Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys , 2008 .

[6]  G. Pressouyre A classification of hydrogen traps in steel , 1979 .

[7]  A. Atrens,et al.  The initiation and propagation of stress corrosion cracking in AISI 4340 and 3.5 NiCrMoV rotor steel in constant load tests , 1996 .

[8]  A. W. Thompson,et al.  Hydrogen effects on material behavior , 1990 .

[9]  J. A. Donovan,et al.  Hydrogen embrittlement of metals , 1972 .

[10]  A. Atrens,et al.  An evaluation of steels subjected to rock bolt SCC conditions , 2007 .

[11]  Andrej Atrens,et al.  SCC of copper using the linearly increasing stress test , 1992 .

[12]  L. Cornish,et al.  Hydrogen in metals , 2001 .

[13]  Andrej Atrens,et al.  SCC initiation for X65 pipeline steel in the "high" pH carbonate/bicarbonate solution , 2003 .

[14]  Andrej Atrens,et al.  Analysis of a rock bolt failed in service , 2002 .

[15]  Andrej Atrens,et al.  Laboratory Testing of Rock Bolt Stress Corrosion Cracking , 2003 .

[16]  V. Lins,et al.  The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking , 2003 .

[17]  G. Song,et al.  Stress corrosion cracking in magnesium alloys: Characterization and prevention , 2007 .

[18]  Andrej Atrens,et al.  Environmental influence on the stress corrosion cracking of rock bolts , 2003 .

[19]  D. R. Cousens,et al.  Implications of specimen preparation and of surface contamination for the measurement of the grain boundary carbon concentration of steels using x-ray microanalysis in an UHV FESTEM , 2000 .

[20]  R. A. Oriani,et al.  The diffusion and trapping of hydrogen in steel , 1970 .

[21]  S. Ramamurthy,et al.  The stress corrosion cracking of as-quenched 4340 and 3.5NiCrMoV steels under stress rate control in distilled water at 90°C , 1993 .

[22]  Hannu Hänninen,et al.  HYDROGEN EFFECTS ON MATERIAL BEHAVIOR AND CORROSION DEFORMATION INTERACTIONS , 2003 .

[23]  J. Toribio,et al.  Effect of cold drawing on environmentally assisted cracking of cold-drawn steel , 1996 .

[24]  D. Allen-Booth,et al.  A mathematical model describing the effects of micro voids upon the diffusion of hydrogen in iron and steel , 1973 .

[25]  Andrej Atrens,et al.  Measurement of grain boundary composition for X52 pipeline steel , 1998 .

[26]  A. Atrens,et al.  Initiation of stress corrosion cracking for pipeline steels in a carbonate-bicarbonate solution , 1996 .

[27]  Andrej Atrens,et al.  Microstructure of X52 and X65 pipeline steels , 1999 .

[28]  K. Stiller,et al.  Atom probe field ion microscope measurements of carbon segregation at an alpha :alpha grain boundary and service failures by intergranular stress corrosion cracking , 2006 .

[29]  Andrej Atrens,et al.  Material influence on the stress corrosion cracking of rock bolts , 2005 .

[30]  R. A. Oriani,et al.  Hydrogen degradation of ferrous alloys , 1985 .

[31]  A. Atrens,et al.  Microstructure and grain boundary microanalysis of X70 pipeline steel , 2003 .

[32]  Andrej Atrens,et al.  Analysis of service stress corrosion cracking in a natural gas transmission pipeline, active or dormant? , 2004 .

[33]  Henry Eyring,et al.  Hydrogen in metals , 1948 .

[34]  E. Gamboa,et al.  Stress corrosion cracking fracture mechanisms in rock bolts , 2003 .

[35]  Jai-Young Lee,et al.  Hydrogen solubility in pure iron and effects of alloying elements on the solubility in the temperature range 20 to 500° C , 1981 .

[36]  I. Bernstein,et al.  The Role of Traps in the Microstructural Control of Hydrogen Embrittlement of Steels. , 1984 .

[37]  Andrej Atrens,et al.  Metallurgical aspects of rock bolt stress corrosion cracking , 2008 .

[38]  A. Atrens,et al.  SCC of commercial steels exposed to high hydrogen fugacity , 2008 .

[39]  A. Atrens,et al.  Linearly-increasing-stress testing of carbon steel in 4 N NaNO3 and in Bayer liquor , 1998 .

[40]  Bruce Hebblewhite,et al.  Failure of rockbolts in underground mines in Australia , 2003 .