A Message-Passing Algorithm for Graph Isomorphism

A message-passing procedure for solving the graph isomorphism problem is proposed. The procedure resembles the belief-propagation algorithm in the context of graphical models inference and LDPC decoding. To enable the algorithm, the input graphs are transformed into intermediate canonical representations of bipartite graphs. The matching procedure injects specially designed input patterns to the canonical graphs and runs a message-passing algorithm to generate two output fingerprints that are matched if and only if the input graphs are isomorphic.

[1]  Minsu Cho,et al.  Reweighted Random Walks for Graph Matching , 2010, ECCV.

[2]  L. Litwin,et al.  Error control coding , 2001 .

[3]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[4]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[5]  Jacobo Torán,et al.  The Graph Isomorphism Problem (Dagstuhl Seminar 15511) , 2015, Dagstuhl Reports.

[6]  Javier Larrosa,et al.  Constraint satisfaction algorithms for graph pattern matching , 2002, Mathematical Structures in Computer Science.

[7]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Mario Vento,et al.  A Database of Graphs for Isomorphism and Sub-Graph Isomorphism Benchmarking , 2001 .

[9]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[10]  Igor L. Markov,et al.  Exploiting structure in symmetry detection for CNF , 2004, Proceedings. 41st Design Automation Conference, 2004..

[11]  J. B. Wang,et al.  A classical approach to the graph isomorphism problem using quantum walks , 2007, 0705.2531.

[12]  Ieee Xplore,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Information for Authors , 2022, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[14]  Mario Vento,et al.  Graph Matching and Learning in Pattern Recognition in the Last 10 Years , 2014, Int. J. Pattern Recognit. Artif. Intell..

[15]  Igor L. Markov,et al.  Faster symmetry discovery using sparsity of symmetries , 2008, 2008 45th ACM/IEEE Design Automation Conference.

[16]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[17]  Marco Gori,et al.  Exact and approximate graph matching using random walks , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[19]  Nir Friedman,et al.  Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning , 2009 .

[20]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[21]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[22]  Petteri Kaski,et al.  Conflict Propagation and Component Recursion for Canonical Labeling , 2011, TAPAS.

[23]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[24]  Mario Vento,et al.  Graph matching: a fast algorithm and its evaluation , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[25]  Andrew K. C. Wong,et al.  Graph Optimal Monomorphism Algorithms , 1980, IEEE Transactions on Systems, Man, and Cybernetics.