High levels of the adhesion molecule CD44 on leukemic cells generate acute myeloid leukemia relapse after withdrawal of the initial transforming event

[1]  M. Terol,et al.  Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain. , 2010, Cancer cell.

[2]  Tina N. Davis,et al.  HOXA9 is required for survival in human MLL-rearranged acute leukemias. , 2009, Blood.

[3]  M. Loh,et al.  A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene. , 2009, Blood.

[4]  N. Sebire,et al.  Acute myeloid leukemia induced by MLL-ENL is cured by oncogene ablation despite acquisition of complex genetic abnormalities. , 2008, Blood.

[5]  W. Hiddemann,et al.  AML1–ETO meets JAK2: clinical evidence for the two hit model of leukemogenesis from a myeloproliferative syndrome progressing to acute myeloid leukemia , 2007, Leukemia.

[6]  Jonas Larsson,et al.  HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. , 2007, Blood.

[7]  T. Ley,et al.  Commonly Dysregulated Genes in Murine Apl Cells , 2006 .

[8]  R. A. Etten,et al.  Requirement for CD44 in homing and engraftment of BCR-ABL–expressing leukemic stem cells , 2006, Nature Medicine.

[9]  J. Dick,et al.  Targeting of CD44 eradicates human acute myeloid leukemic stem cells , 2006, Nature Medicine.

[10]  E. Koivunen,et al.  Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. , 2006, Blood.

[11]  A. Wan,et al.  The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia. , 2006, Blood.

[12]  C. Preudhomme,et al.  Cooperation of activating Ras/rtk signal transduction pathway mutations and inactivating myeloid differentiation gene mutations in M0 AML: a study of 45 patients , 2006, Leukemia.

[13]  Bob Löwenberg,et al.  Significance of murine retroviral mutagenesis for identification of disease genes in human acute myeloid leukemia. , 2006, Cancer research.

[14]  O. Kollet,et al.  How do stem cells find their way home? , 2005, Blood.

[15]  C. Barcia,et al.  Regulatable gene expression systems for gene therapy applications: progress and future challenges. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[16]  W. Hiddemann,et al.  The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. , 2005, The Journal of clinical investigation.

[17]  Mikhail M Savitski,et al.  Improving Protein Identification Using Complementary Fragmentation Techniques in Fourier Transform Mass Spectrometry* , 2005, Molecular & Cellular Proteomics.

[18]  Guoqiang Chen,et al.  AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Humphries,et al.  Differential and Common Leukemogenic Potentials of Multiple NUP98-Hox Fusion Proteins Alone or with Meis1 , 2004, Molecular and Cellular Biology.

[20]  Gerald Hoefler,et al.  Common alterations in gene expression and increased proliferation in recurrent acute myeloid leukemia , 2004, Oncogene.

[21]  M. Tomasson,et al.  An activated receptor tyrosine kinase, TEL/PDGFβR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Apte,et al.  Matrix metalloproteinases: old dogs with new tricks , 2003, Genome Biology.

[23]  S. Karlsson,et al.  Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. , 2001, Blood.

[24]  M. Cleary,et al.  Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins , 2001, Oncogene.

[25]  I. Weissman,et al.  AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  C. Buske,et al.  Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. , 2001, Blood.

[27]  U. Thorsteinsdóttir,et al.  NUP98–HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice , 2001, The EMBO journal.

[28]  Unnur Thorsteinsdottir,et al.  Defining Roles for HOX and MEIS1 Genes in Induction of Acute Myeloid Leukemia , 2001, Molecular and Cellular Biology.

[29]  D. Tenen,et al.  Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. , 2000, Blood.

[30]  K. Bradstock,et al.  Expression of CD44 variant exons in acute myeloid leukemia is more common and more complex than that observed in normal blood, bone marrow or CD34+ cells , 2000, Leukemia.

[31]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[32]  U. Thorsteinsdóttir,et al.  The Oncoprotein E2A-Pbx1a Collaborates with Hoxa9 To Acutely Transform Primary Bone Marrow Cells , 1999, Molecular and Cellular Biology.

[33]  R. Humphries,et al.  Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells , 1999, Leukemia.

[34]  L. Kömüves,et al.  HOXA9 Forms Triple Complexes with PBX2 and MEIS1 in Myeloid Cells , 1999, Molecular and Cellular Biology.

[35]  Unnur Thorsteinsdottir,et al.  Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b , 1998, The EMBO journal.

[36]  H. Kluin-Nelemans,et al.  A strong expression of CD44-6v correlates with shorter survival of patients with acute myeloid leukemia. , 1998, Blood.

[37]  M. Magli,et al.  Effects of HOX homeobox genes in blood cell differentiation , 1997, Journal of cellular physiology.

[38]  J. Moskow,et al.  AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins , 1997, Molecular and cellular biology.

[39]  U. Thorsteinsdóttir,et al.  Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia , 1997, Molecular and cellular biology.

[40]  Guy Sauvageau,et al.  The Role of HOX Homeobox Genes in Normal and Leukemic Hematopoiesis , 1996, Stem cells.

[41]  Keisuke Toyama,et al.  The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP96 and class I homeoprotein HOXA9 , 1996, Nature Genetics.

[42]  A. Feinberg,et al.  Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia , 1996, Nature Genetics.

[43]  E. Boncinelli,et al.  Coordinate regulation of HOX genes in human hematopoietic cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K. Coombes,et al.  HOX expression patterns identify a common signature for favorable AML , 2008, Leukemia.

[45]  S. Erkeland,et al.  Retroviral insertion mutagenesis in mice as a comparative oncogenomics tool to identify disease genes in human leukemia. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[46]  B. Göttgens,et al.  Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. , 2005, Blood.

[47]  J. Reilly,et al.  Second hit mutations in the RTK/RAS signaling pathway in acute myeloid leukemia with inv(16). , 2004, Haematologica.