Anisotropic Curie temperature materials

Existence of anisotropic Curie temperature materials [E. R. Callen, Phys. Rev. 124, 1373 (1961)] is a longstanding prediction - materials that become paramagnetic along certain crystal directions at a lower temperature while remaining magnetically ordered in other directions up to a higher temperature. Validating Callen's theory, we show that all directions within the basal plane of monoclinic Fe7S8 single crystals remain ordered up to 603 K while the hard c-axis becomes paramagnetic at 225 K. Materials with such a large directional dependence of Curie temperature opens the possibility of uniquely new devices and phenomena.

[1]  K. Pomoni,et al.  Resistivity anisotropy of pyrrhotite , 1984 .

[2]  A. Kotani,et al.  Recent Advances in Magnetism of Transition Metal Compounds: Festschrift in Honour of Professor K Motizuki , 1993 .

[3]  E. Westrum,et al.  Heat Capacities and Thermodynamic Properties of the Pyrrhotites FeS and Fe0.877S from 5 to 350°K , 1959 .

[4]  L. Cohen,et al.  Thin-film alternating current nanocalorimeter for low temperatures and high magnetic fields , 2005 .

[5]  M. Kramer,et al.  Ordering, Incommensuration, and Phase Transitions in Pyrrhotite: Part I: A TEM Study of Fe7S8 , 1996 .

[6]  Jacques Chaussy,et al.  Nanocalorimeter for high resolution measurements of low temperature heat capacities of thin films and single crystals , 1997 .

[7]  A. Okazaki,et al.  Neutron Diffraction Study of Fe 7 Se 8 . II , 1970 .

[8]  M. Yamada,et al.  On the Magnetic Anisotropy of a Pyrrhotite Crystal , 1959 .

[9]  G. Seidel,et al.  Steady-State, ac-Temperature Calorimetry , 1968 .

[10]  V. V. Kokorin,et al.  Magnetic-field-induced twin boundary motion in magnetic shape-memory alloys , 2000 .

[11]  Williams,et al.  Arrott-plot criterion for ferromagnetism in disordered systems. , 1986, Physical review. B, Condensed matter.

[12]  K. Knight,et al.  Structure and magnetism in synthetic pyrrhotite Fe 7 S 8 : A powder neutron-diffraction study , 2004 .

[13]  E. Bertaut Contribution à l'étude des structures lacunaires: la pyrrhotine , 1953 .

[14]  Kiyoo Sato Magnetizing Process of Pyrrhotite Crystal in High Magnetic Field , 1966 .

[15]  D. Givord,et al.  Co energy and magnetization anisotropies in RCo5 intermetallics between 4.2 K and 300 K , 1981 .

[16]  V. Prida,et al.  Ni59.0Mn23.5In17.5 Heusler alloy as the core of glass-coated microwires: Magnetic properties and magnetocaloric effect , 2012 .

[17]  J. Maan,et al.  Magnetic anisotropy behaviour of pyrrhotite as determined by low- and high-field experiments , 2008 .

[18]  M. Yamada,et al.  Megnetocrystalline Anisotropy of Pyrrhotite , 1964 .

[19]  N. Suzuki,et al.  Electronic band structure and photoemission spectra of Fe7S8 , 1996 .

[20]  R. Wiesendanger,et al.  Anomalously large g factor of single atoms adsorbed on a metal substrate , 2011, 1108.2443.

[21]  S. Sakkopoulos,et al.  Transverse magnetoresistance in pyrrhotite for B ⊥ c , 1987 .

[22]  Fan Li,et al.  Ordering, Incommensuration, and Phase Transitions in Pyrrhotite: Part II: A High-Temperature X-Ray Powder Diffraction and Thermomagnetic Study , 1996 .

[23]  A. Okazaki,et al.  Neutron Diffraction Study of Fe7Se8 , 1967 .

[24]  J. V. Vleck A Survey of the Theory of Ferromagnetism , 1945 .

[25]  M. Bin,et al.  Magnetic Anisotropy in Pyrrhotite , 1963 .

[26]  C. Graham,et al.  Unusual Magnetic Behavior of Disordered Ni3Mn , 1958 .

[27]  J. D. Felske,et al.  Multiple phase transitions found in a magnetic Heusler alloy and thermodynamics of their magnetic internal energy , 2010 .

[28]  A. Arrott Criterion for Ferromagnetism from Observations of Magnetic Isotherms , 1957 .

[29]  M. Mueller,et al.  Neutron Diffraction Techniques and Their Applications to Some Problems in Physics , 1959 .

[30]  H. D. Chopra,et al.  Temperature- and field-dependent evolution of micromagnetic structure in ferromagnetic shape-memory alloys , 2004 .

[31]  Pifrre Weiss Sur l'aimantation plane de la pyrrhotine , 1899 .

[32]  R. Benoît Étude paramagnétique des composés binaires , 1955 .

[33]  M. Fisher,et al.  Detailed Magnetic Behavior of Nickel Near its Curie Point , 1964 .

[34]  L. Néel Some New Results on Antiferromagnetism and Ferromagnetism , 1953 .

[35]  J. H. Van Vleck,et al.  On the Anisotropy of Cubic Ferromagnetic Crystals , 1937 .

[36]  K. Hirakawa The Magnetic Properties of Iron Selenide Single Crystals , 1957 .

[37]  J. Crangle,et al.  The magnetization of pure iron and nickel , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[38]  P. Rochette,et al.  THE LOW TEMPERATURE TRANSITION IN MONOCLINIC PYRRHOTITE , 1988 .

[39]  Miyuki Murakami,et al.  Magnetic and electrical anisotropies of iron sulfide single crystals , 1958 .

[40]  K. Pomoni,et al.  Hall‐effect studies on pyrrhotite , 1982 .

[41]  J. Mattei,et al.  Magnetic transition at 30-34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks , 1990 .

[42]  W. Sucksmith,et al.  The spontaneous magnetization of alloys I. Copper nickel alloys , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  S. K. Watson,et al.  Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K , 1994 .

[44]  H. Kroemer Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks , 2001 .

[45]  M. Dekkers Magnetic properties of natural pyrrhotite. II. High- and low-temperature behaviour of Jrs and TRM as function of grain size , 1989 .

[46]  A. Fujimori,et al.  Photoemission study of electron correlation in M7X8 (M=Fe, Co; X=S, Se) , 1999 .

[47]  M. Besnus,et al.  Sublattice Rotations in Ferrimagnets: The Case of Pyrrhotite , 1968 .