Robust pole placement for second-order systems: an LMI approach

Based on recently developed sufficient conditions for stability of polynomial matrices, an LMI technique is described to perform robust pole placement by proportional-derivative feedback on second-order linear systems affected by polytopic or norm-bounded uncertainty. As illustrated by several numerical examples, at the core of the approach is the choice of a nominal, or central quadratic polynomial matrix.

[1]  Olivier Bachelier,et al.  D-stability of polynomial matrices , 2001 .

[2]  Jaroslav Kautsky,et al.  Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..

[3]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[4]  Andrew Bartlett,et al.  Robust Control: Systems with Uncertain Physical Parameters , 1993 .

[5]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[6]  B. Datta,et al.  ORTHOGONALITY AND PARTIAL POLE ASSIGNMENT FOR THE SYMMETRIC DEFINITE QUADRATIC PENCIL , 1997 .

[7]  Enrique Wulff-barreiro Spain , 1988, The Lancet.

[8]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[9]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[10]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[11]  P. Peres,et al.  a linear programming oriented procedure for quadratic stabilization of uncertain systems , 1989 .

[12]  A. Kress,et al.  Eigenstructure assignment using inverse eigenvalue methods , 1995 .

[13]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[14]  Paul Van Dooren,et al.  Optimization over positive polynomial matrices , 2000 .

[15]  J. Ackermann,et al.  Robust control , 2002 .

[16]  Pascal Gahinet,et al.  H/sub /spl infin// design with pole placement constraints: an LMI approach , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[17]  Dimitri Peaucelle,et al.  Positive polynomial matrices and improved LMI robustness conditions , 2003, Autom..

[18]  Arkadi Nemirovski,et al.  Robust dissipativity of interval uncertain systems , 2004 .

[19]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[20]  Arkadi Nemirovski,et al.  Robust Dissipativity of Interval Uncertain Linear Systems , 2002, SIAM J. Control. Optim..

[21]  Yurii Nesterov,et al.  Positivity and Linear Matrix Inequalities , 2002, Eur. J. Control.

[22]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[23]  Nicholas J. Higham,et al.  Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..

[24]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[25]  Guang-Ren Duan,et al.  Complete parametric approach for eigenstructure assignment in a class of second-order linear systems , 1999, Autom..

[26]  Michael Sebek,et al.  The polynomial toolbox for matlab , 1997 .

[27]  Dimitri Peaucelle,et al.  An LMI condition for robust stability of polynomial matrix polytopes , 2001, Autom..

[28]  Biswa Nath Datta,et al.  Numerically robust pole assignment for second-order systems , 1996 .

[29]  Rama K. Yedavalli,et al.  Stability of matrix second-order systems: new conditions and perspectives , 1999, IEEE Trans. Autom. Control..

[30]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.