Adaptive Beamforming With Resource Allocation for Distance-Aware Multi-User Indoor Terahertz Communications

Terahertz (THz) communication is envisioned as a key technology for next-generation ultra-high-speed wireless systems. In this paper, we study an indoor multi-user THz communication system with multiple antenna subarrays. To capture the distance-frequency-dependent characteristics of THz channels, we design a hybrid beamforming scheme with distance-aware multi-carrier transmission, including analog beamforming for user grouping and interference cancellation in radio-frequency (RF) domain and digital beamforming with dynamically selected subarrays at baseband. Specifically, an adaptive power allocation and low-complexity antenna subarray selection policy is developed to serve different users at different distances and reduce the cost of active RF circuits simultaneously, where two greedy subarray selection algorithms are proposed. The effectiveness of the proposed adaptive hybrid beamforming and antenna subarray selection algorithms is verified through simulation results, which achieves significant gains over other nonadaptive and non-distance-aware schemes.

[1]  Zhaocheng Wang,et al.  Terahertz Terabit Wireless Communication , 2011, IEEE Microwave Magazine.

[2]  Ian F. Akyildiz,et al.  Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band , 2011, IEEE Transactions on Wireless Communications.

[3]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[4]  Jaspreet Singh,et al.  On the feasibility of beamforming in millimeter wave communication systems with multiple antenna arrays , 2014, 2014 IEEE Global Communications Conference.

[5]  Ian F. Akyildiz,et al.  Distance-aware multi-carrier (DAMC) modulation in Terahertz Band communication , 2014, 2014 IEEE International Conference on Communications (ICC).

[6]  Mohammad Gharavi-Alkhansari,et al.  Fast antenna subset selection in MIMO systems , 2004, IEEE Transactions on Signal Processing.

[7]  Ian F. Akyildiz,et al.  Multi-Ray Channel Modeling and Wideband Characterization for Wireless Communications in the Terahertz Band , 2015, IEEE Transactions on Wireless Communications.

[8]  S. Cherry,et al.  Edholm's law of bandwidth , 2004, IEEE Spectrum.

[9]  Robert W. Heath,et al.  Spatially Sparse Precoding in Millimeter Wave MIMO Systems , 2013, IEEE Transactions on Wireless Communications.

[10]  Giuseppe Caire,et al.  Joint Spatial Division and Multiplexing—The Large-Scale Array Regime , 2013, IEEE Transactions on Information Theory.

[11]  Sebastian Priebe,et al.  Angular and RMS delay spread modeling in view of THz indoor communication systems , 2014 .

[12]  T. Kurner,et al.  Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives , 2007, IEEE Antennas and Propagation Magazine.

[13]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[14]  Mai H. Vu,et al.  MISO Capacity with Per-Antenna Power Constraint , 2010, IEEE Transactions on Communications.

[15]  Tsung-Hui Chang,et al.  Robust Hybrid Beamforming with Phased Antenna Arrays for Downlink SDMA in Indoor 60 GHz Channels , 2013, IEEE Transactions on Wireless Communications.

[16]  Xiaojing Huang,et al.  A hybrid adaptive antenna array , 2010, IEEE Transactions on Wireless Communications.

[17]  Ian F. Akyildiz,et al.  Terahertz band: Next frontier for wireless communications , 2014, Phys. Commun..

[18]  Akbar M. Sayeed,et al.  Deconstructing multiantenna fading channels , 2002, IEEE Trans. Signal Process..

[19]  Randy L. Haupt,et al.  Antenna Arrays: A Computational Approach , 2010 .

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  A.A.M. Saleh,et al.  A Statistical Model for Indoor Multipath Propagation , 1987, IEEE J. Sel. Areas Commun..

[22]  Chin-Sean Sum,et al.  Beam Codebook Based Beamforming Protocol for Multi-Gbps Millimeter-Wave WPAN Systems , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[23]  Robert W. Heath,et al.  Multimode precoding in millimeter wave MIMO transmitters with multiple antenna sub-arrays , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[24]  Geoffrey Ye Li,et al.  Distance-aware multi-carrier indoor terahertz communications with antenna array selection , 2014, 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC).

[25]  A. Alú,et al.  Terahertz Antenna Phase Shifters Using Integrally-Gated Graphene Transmission-Lines , 2013, IEEE Transactions on Antennas and Propagation.

[26]  M. Koch,et al.  Scattering Analysis for the Modeling of THz Communication Systems , 2007, IEEE Transactions on Antennas and Propagation.

[27]  Sebastian Priebe,et al.  AoA, AoD and ToA Characteristics of Scattered Multipath Clusters for THz Indoor Channel Modeling , 2011, EW.

[28]  Geoffrey Ye Li,et al.  Indoor Terahertz Communications: How Many Antenna Arrays Are Needed? , 2015, IEEE Transactions on Wireless Communications.

[29]  Jeffrey G. Andrews,et al.  Efficient Transmit Antenna Selection for Multiuser MIMO Systems with Block Diagonalization , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[30]  Xinying Li,et al.  Faster than fiber: over 100-Gb/s signal delivery in fiber wireless integration system. , 2013, Optics express.

[31]  T. Nagatsuma,et al.  Present and Future of Terahertz Communications , 2011, IEEE Transactions on Terahertz Science and Technology.

[32]  Sebastian Priebe,et al.  Stochastic Modeling of THz Indoor Radio Channels , 2013, IEEE Transactions on Wireless Communications.

[33]  Katarzyna Balakier,et al.  Photonic generation for multichannel THz wireless communication. , 2014, Optics express.

[34]  Upamanyu Madhow,et al.  Indoor Millimeter Wave MIMO: Feasibility and Performance , 2011, IEEE Transactions on Wireless Communications.