On exact solutions of a class of fractional Euler–Lagrange equations

Abstract In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where acDtαx(t)) and 0<α<1, such that the following is the corresponding Euler–Lagrange 1$$\lefteqn{{}_{t}D_{b}^{\alpha}\bigl({}_{a}^{c}D_{t}^{\alpha}\bigr)x(t)+b\bigl(t,x(t)\bigr)\bigl({}_{a}^{c}D_{t}^{\alpha}x(t)\bigr)+f\bigl(t,x(t)\bigr)=0.}$$ At last, exact solutions for some Euler–Lagrange equations are presented. In particular, we consider the following equations 2$$\lefteqn{{}_{t}D_{b}^{\alpha}\bigl({}_{a}^{c}D_{t}^{\alpha}x(t)\bigr)=\lambda x(t)\quad (\lambda\in R),}$$3$$\lefteqn{{}_{t}D_{b}^{\alpha}\bigl({}_{a}^{c}D_{t}^{\alpha}x(t)\bigr)+g(t)_{a}^{c}D_{t}^{\alpha}x(t)=f(t),}$$ where g(t) and f(t) are suitable functions.

[1]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[2]  B. West Fractional Calculus in Bioengineering , 2007 .

[3]  D.Baleanu,et al.  Lagrangians with linear velocities within Riemann-Liouville fractional derivatives , 2004 .

[4]  Malgorzata Klimek,et al.  Fractional sequential mechanics — models with symmetric fractional derivative , 2001 .

[5]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[6]  Dumitru Baleanu,et al.  The Hamilton formalism with fractional derivatives , 2007 .

[7]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .

[8]  George M. Zaslavsky Hamiltonian Chaos and Fractional Dynamics , 2005 .

[9]  D. Baleanu,et al.  Formulation of Hamiltonian Equations for Fractional Variational Problems , 2005, math-ph/0510029.

[10]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Om P. Agrawal,et al.  Fractional variational calculus and the transversality conditions , 2006 .

[12]  Margarita Rivero,et al.  On a Riemann–Liouville Generalized Taylor's Formula , 1999 .

[13]  O. Agrawal,et al.  A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems , 2007 .

[14]  Dumitru Baleanu,et al.  Fractional Hamiltonian analysis of irregular systems , 2006, Signal Process..

[15]  Malgorzata Klimek,et al.  Lagrangean and Hamiltonian fractional sequential mechanics , 2002 .

[16]  D.Baleanu,et al.  Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives , 2005, hep-th/0510071.

[17]  D. Baleanu,et al.  Hamiltonian formulation of classical fields within Riemann–Liouville fractional derivatives , 2005, math-ph/0510030.

[18]  A. Tofighi,et al.  The intrinsic damping of the fractional oscillator , 2003 .

[19]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[20]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[21]  Guy Jumarie,et al.  Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferentiable functions , 2007 .

[22]  A. Stanislavsky,et al.  Fractional oscillator. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[24]  S. C. Lim,et al.  Stochastic quantization of nonlocal fields , 2004 .