Pulsar timing residual induced by ultralight vector dark matter

[1]  Samuel D. McDermott,et al.  Cosmological evolution of light dark photon dark matter , 2019, Physical Review D.

[2]  J. Soda,et al.  Search for ultralight scalar dark matter with NANOGrav pulsar timing arrays , 2019, Journal of Cosmology and Astroparticle Physics.

[3]  F. Takahashi,et al.  Relic abundance of dark photon dark matter , 2018, Physics Letters B.

[4]  G. Desvignes,et al.  The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  K. Nakayama Vector coherent oscillation dark matter , 2019, Journal of Cosmology and Astroparticle Physics.

[6]  K. Riles,et al.  Searching for dark photon dark matter in LIGO O1 data , 2019, Communications Physics.

[7]  K. Nakayama,et al.  Production of purely gravitational dark matter: the case of fermion and vector boson , 2019, Journal of High Energy Physics.

[8]  J. Soda,et al.  Searching for bispectrum of stochastic gravitational waves with pulsar timing arrays , 2018, Journal of Cosmology and Astroparticle Physics.

[9]  J. A. Dror,et al.  Parametric resonance production of ultralight vector dark matter , 2018, Physical Review D.

[10]  J. Santiago,et al.  Vector dark matter production at the end of inflation , 2018, Journal of Cosmology and Astroparticle Physics.

[11]  A. Pierce,et al.  Dark photon dark matter produced by axion oscillations , 2018, Physical Review D.

[12]  Matthew Kerr,et al.  Parkes Pulsar Timing Array constraints on ultralight scalar-field dark matter , 2018, Physical Review D.

[13]  F. Urban,et al.  Vector fuzzy dark matter, fifth forces, and binary pulsars , 2018, Journal of Cosmology and Astroparticle Physics.

[14]  Jiro Soda,et al.  Gravitational wave forest from string axiverse , 2018, Journal of Cosmology and Astroparticle Physics.

[15]  J. Soda,et al.  Conversion of gravitons into dark photons in cosmological dark magnetic fields , 2018, Physical Review D.

[16]  K. Riles,et al.  Searching for Dark Photon Dark Matter with Gravitational-Wave Detectors. , 2018, Physical review letters.

[17]  K. Maeda,et al.  Massive graviton geons , 2017, 1710.05606.

[18]  J. Soda,et al.  Cosmological imprints of string axions in plateau , 2017, The European Physical Journal C.

[19]  Daniel Grin,et al.  Using the Full Power of the Cosmic Microwave Background to Probe Axion Dark Matter , 2017, 1708.05681.

[20]  K. Maeda,et al.  Condensate of Massive Graviton and Dark Matter , 2017, 1707.05003.

[21]  Matteo Viel,et al.  Lyman-alpha Constraints on Ultralight Scalar Dark Matter: Implications for the Early and Late Universe , 2017, 1708.00015.

[22]  R. Lasenby,et al.  Black hole superradiance signatures of ultralight vectors , 2017, 1704.05081.

[23]  Z. Haiman,et al.  Testing the Binary Hypothesis: Pulsar Timing Constraints on Supermassive Black Hole Binary Candidates , 2017, 1703.10611.

[24]  Matteo Viel,et al.  First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.

[25]  L. Kelley,et al.  The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays , 2017, 1702.02180.

[26]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[27]  J. Cembranos,et al.  Perturbations of ultralight vector field dark matter , 2016, 1611.03793.

[28]  J. Soda,et al.  Detecting ultralight axion dark matter wind with laser interferometers , 2016, 1608.05933.

[29]  J. Soda,et al.  Primordial gravitational waves induced by magnetic fields in an ekpyrotic scenario , 2016, 1607.07062.

[30]  K. Aoki,et al.  Massive gravitons as dark matter and gravitational waves , 2016, 1604.06704.

[31]  M. Bernardi,et al.  Selection bias in dynamically measured supermassive black hole samples: consequences for pulsar timing arrays , 2016, 1603.09348.

[32]  P. Graham,et al.  Vector Dark Matter from Inflationary Fluctuations , 2015, 1504.02102.

[33]  A. Lommen Pulsar timing arrays: the promise of gravitational wave detection , 2015, Reports on progress in physics. Physical Society.

[34]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[35]  G. Hobbs,et al.  Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays , 2014, 1406.5297.

[36]  N. Porayko,et al.  Constraints on ultralight scalar dark matter from pulsar timing , 2014, 1408.4670.

[37]  V. Rubakov,et al.  Pulsar timing signal from ultralight scalar dark matter , 2013, 1309.5888.

[38]  J. Cembranos,et al.  Isotropy theorem for cosmological vector fields , 2012, 1203.6221.

[39]  A. Ringwald,et al.  WISPy cold dark matter , 2012, 1201.5902.

[40]  B. Stappers,et al.  Constraints on cosmic string tension imposed by the limit on the stochastic gravitational wave background from the European Pulsar Timing Array , 2012, 1201.2419.

[41]  A. Nelson,et al.  Dark light, dark matter, and the misalignment mechanism , 2011, 1105.2812.

[42]  C. I. O. Technology.,et al.  Astrometric effects of a stochastic gravitational wave background , 2010, 1009.4192.

[43]  P. Salucci,et al.  The dark matter density at the Sun’s location , 2010, 1003.3101.

[44]  J. Soda,et al.  The Nature of Primordial Fluctuations from Anisotropic Inflation , 2010, 1003.0056.

[45]  M. Peloso,et al.  Scalar-scalar, scalar-tensor, and tensor-tensor correlators from anisotropic inflation , 2010, 1001.4088.

[46]  Tim Dulaney,et al.  Primordial power spectra from anisotropic inflation , 2010, 1001.2301.

[47]  Markus Weber,et al.  Determination of the Local Dark Matter Density in our Galaxy , 2009, 0910.4272.

[48]  R. Catena,et al.  A novel determination of the local dark matter density , 2009, 0907.0018.

[49]  J. Soda,et al.  Inflationary universe with anisotropic hair. , 2009, Physical review letters.

[50]  D. Clowe,et al.  A Direct Empirical Proof of the Existence of Dark Matter , 2006, astro-ph/0608407.

[51]  R. Barkana,et al.  Cold and Fuzzy Dark Matter , 2000, astro-ph/0003365.

[52]  S. Sin Late time cosmological phase transition and galactic halo as Bose liquid , 1992, hep-ph/9205208.

[53]  W. Press,et al.  Single mechanism for generating large-scale structure and providing dark missing matter. , 1990, Physical review letters.

[54]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[55]  V. Rubin,et al.  Rotational properties of 23 Sb galaxies , 1982 .

[56]  S. Detweiler Pulsar timing measurements and the search for gravitational waves , 1979 .

[57]  A. Starobinsky Spectrum of relict gravitational radiation and the early state of the universe , 1979 .

[58]  M. Sazhin Opportunities for detecting ultralong gravitational waves , 1978 .

[59]  L. Grishchuk,et al.  Amplification of gravitational waves in an isotropic universe , 1974 .