Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes

We experimentally demonstrate spin waves coupling in two laterally adjacent magnetic stripes. By the means of Brillouin light scattering spectroscopy, we show that the coupling efficiency depends both on the magnonic waveguides' geometry and the characteristics of spin-wave modes. In particular, the lateral confinement of coupled yttrium-iron-garnet stripes enables the possibility of control over the spin-wave propagation characteristics. Numerical simulations (in time domain and frequency domain) reveal the nature of intermodal coupling between two magnonic stripes. The proposed topology of multimode magnonic coupler can be utilized as a building block for fabrication of integrated parallel functional and logic devices such as the frequency selective directional coupler or tunable splitter, enabling a number of potential applications for planar magnonics.

[1]  A. Sadovnikov,et al.  Multimode Surface Magnetostatic Wave Propagation in Irregular Planar YIG Waveguide , 2014 .

[2]  S. V. Gerus,et al.  Propagation of magnetostatic waves in two coupled channels created by a magnetic field , 1996 .

[3]  J Leuthold,et al.  Nanomagnonic devices based on the spin-transfer torque. , 2014, Nature nanotechnology.

[4]  A. Sadovnikov,et al.  Magnonic Bandgap Control in Coupled Magnonic Crystals , 2014, IEEE Transactions on Magnetics.

[5]  C. S. Tsai,et al.  Spin waves in periodic magnetic structures-magnonic crystals , 2001 .

[6]  H. Ulrichs,et al.  The building blocks of magnonics , 2011, 1101.0479.

[7]  Patryk Krzysteczko,et al.  Mode interference and periodic self-focusing of spin waves in permalloy microstripes , 2008 .

[8]  A. K. Ganguly,et al.  Magnetostatic wave propagation in double layers of magnetically anisotropic slabs , 1974 .

[9]  S. James Allen,et al.  Cross Junction Spin Wave Logic Architecture , 2014, IEEE Transactions on Magnetics.

[10]  A. Sadovnikov,et al.  Multimode Propagation of Magnetostatic Waves in a Width-Modulated Yttrium-Iron-Garnet Waveguide , 2014, IEEE Magnetics Letters.

[11]  B. Hillebrands,et al.  Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement , 2001 .

[12]  J. Podbielski,et al.  Internal spin-wave confinement in magnetic nanowires due to zig-zag shaped magnetization , 2008 .

[13]  A. Slavin,et al.  Magnonics: a new research area in spintronics and spin wave electronics , 2015 .

[14]  P. Grünberg Magnetostatic spinwave modes of a ferromagnetic double layer , 1980 .

[15]  P. Krzysteczko,et al.  Nano-optics with spin waves at microwave frequencies , 2008 .

[16]  Sergei Urazhdin,et al.  Nanoconstriction-based spin-Hall nano-oscillator , 2014 .

[17]  A. Serga,et al.  Magnon transistor for all-magnon data processing , 2014, Nature Communications.

[18]  I. Krivorotov,et al.  Nanowire spin torque oscillator driven by spin orbit torques , 2014, Nature Communications.

[19]  D. Grundler,et al.  Magnonics: Spin Waves on the Nanoscale , 2009 .

[20]  J. P. Park,et al.  Spin waves in an inhomogeneously magnetized stripe , 2004 .

[21]  V. Demidov,et al.  Micro-Brillouin Light Scattering Spectroscopy of Magnetic Nanostructures , 2008, IEEE Transactions on Magnetics.

[22]  H. Glass,et al.  Magnetostatic volume wave propagation in multiple ferrite layers , 1982 .

[23]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[24]  S. Miller Coupled wave theory and waveguide applications , 1954 .

[25]  S. Urazhdin,et al.  Dipolar field-induced spin-wave waveguides for spin-torque magnonics , 2015 .

[26]  S. Bajpai Excitation of magnetostatic surface waves: effect of finite sample width , 1985 .

[27]  R. Camley,et al.  Brillouin scattering of light by spin waves in thin ferromagnetic films (invited) , 1982 .

[28]  Andrii V. Chumak,et al.  Spin-wave tunnelling through a mechanical gap , 2010 .

[29]  S. Nikitov,et al.  Spatiotemporal dynamics of magnetostatic and spin waves in a transversely confined ferrite waveguide , 2013 .

[30]  F. Morgenthaler Nondispersive magnetostatic forward volume waves under field gradient control , 1982 .

[31]  N. Mikoshiba,et al.  Directional coupling of magnetostatic surface waves in a layered structure of YIG films , 1981 .

[32]  J. R. Pierce,et al.  Coupling of Modes of Propagation , 1954 .

[33]  Hermann A. Haus,et al.  Coupled-mode theory of optical waveguides , 1987 .

[34]  B. Hillebrands,et al.  Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale , 2015, Front. Phys..

[35]  M. Kostylev,et al.  Spin-wave logical gates , 2005 .

[36]  M. Kostylev,et al.  A current-controlled, dynamic magnonic crystal , 2009, 0904.0332.

[37]  M. Kostylev,et al.  Brillouin light scattering studies of planar metallic magnonic crystals , 2010, 1004.1881.

[38]  C. Back,et al.  Coupling of spinwave modes in wire structures , 2014 .

[39]  A. Sadovnikov,et al.  Magnonic beam splitter: The building block of parallel magnonic circuitry , 2015 .

[40]  J. Pearson,et al.  Realization of a spin-wave multiplexer , 2014, Nature Communications.

[41]  Nobuo Mikoshiba,et al.  Directional coupling of magnetostatic surface waves in layered magnetic thin films , 1979 .

[42]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[43]  R. Damon,et al.  Magnetostatic modes of a ferromagnet slab , 1961 .

[44]  B. Leven,et al.  Design of a spin-wave majority gate employing mode selection , 2014, 1408.3235.

[45]  V. E. Demidov,et al.  Spin-current nano-oscillator based on nonlocal spin injection , 2015, Scientific Reports.

[46]  S. Demokritov,et al.  Magnonic Waveguides Studied by Microfocus Brillouin Light Scattering , 2015, IEEE Transactions on Magnetics.

[47]  D. Allwood,et al.  Towards graded-index magnonics: Steering spin waves in magnonic networks , 2015 .

[48]  W. Brown,et al.  Multimode inhomogeneous fiber couplers. , 1979, Applied optics.